• Title/Summary/Keyword: Thermal stability and mechanical analysis

Search Result 241, Processing Time 0.044 seconds

Studies on the Thermomechanical Characteristics of the Blend Film of Chitosan/Gelatin (키토산/젤라틴 블랜드 필름의 열적특성에 관한 연구)

  • Kim, Byung-Ho;Park, Jang-Woo;Hong, Ji-Hyang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.567-573
    • /
    • 2005
  • Compatability of films made of chitosan, gelatin, and their blends prepared by aqueous solution casting was investigated using a thermogravimetric analyzer(TGA) and a dynamic mechanical analyzer (DMA). TGA showed gelatin is more thermally stable than chitosan, and thermal stability of chitosan in blends was higher than that of pure chitosan due to interaction among functional groups of component polymers in blend. Glass transition temperature $(T_g)$ of blends was dependent on chitosan content of blends. Blend films exhibited good miscibility. Moisture and glycerol contents of blend strongly affected thermal properties of two component polymers.

Study on the surface modification of zirconia with hydrophilic silanes (친수성기를 가진 실란을 이용한 지르코니아의 표면의 개질 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.247-254
    • /
    • 2016
  • Since microzirconia has excellent thermal and mechanical properties with high chemical and electrical resistance, it can be used in various fields. When the surface of zirconia becomes hydrophilic, its dispersibility in water will be improved as well as the resistance to most hydrophobic contaminants will be increased. In this study, we investigated the introduction of a hydrophilic groups on the microzircornia surface through hydrolysis and condensation reactions with two different silanes containing hydrophilic functional groups, such as ${\gamma}$-aminopropyltrimethoxysilane (APS) and ${\gamma}$-ureidopropyltrimethoxysilane (UPS) at different pH and concentration conditions. A covalent bond formation between the surface hydroxyl groups of zirconia and that of hydrolyzed silanes was confirmed by ninhydrin test and FT-IR spectroscopy. However, the presence of Si on the surfaces of both silane modified microzirconias was unable to detect by SEM/EDS technique. In addition, particle size analysis results provide that the size of microzirconia was changed to smaller or bigger than that of original zirconia due to crushing and aggregation during the modification process. The water dispersibility was improved for only APS modifed zirconia (AS-2 and AS-3) under neutral pH condition, but the water dispersibility and stability for all cases of 0.5~2% UPS modifed zirconia (US series) were much improved.

A Study on Improvement of Fire-resistant and Flame-retardant Properties of Silicone Rubber Composites Containing Perlite (펄라이트를 첨가한 실리콘 고무 복합체의 내화 및 난연 특성 향상에 관한 연구)

  • Lee, Byung-Gab;Lee, Jong-Hyeok;Bang, Dae-Suk;Won, Jong-Pil;Jang, Il-Young;Park, Woo-Young;Jhee, Kwang-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.164-170
    • /
    • 2011
  • In this study, silicone rubber filled with environmentally-friendly perlite was prepared by mechanical mixing in order to improve thermal properties, such as heat and fire resistances. We found that the properties of silicone rubber composites depended on perlite concentration by various characterization methods. Thermogravimetric analysis(TGA) indicated that the initial degradation temperature of silicone/perlite composite was higher than that of pristine silicone rubber. The gas torch test showed that the opposite side temperature of composite materials was remarkably low as compared to that of pristine silicone rubber. In addition, the composites containing 5 wt% and 10 wt% of perlite showed remarkable thermal stability at elevated temperatures according to the results of both fireproof furnace tests under the RABT condition and carbonization furnace tests. The images from a scanning electron microscope(SEM) showed the degree of dispersion of perlite in silicone rubber. Finally, it was confirmed that limited oxygen index(LOI) was increased with perlite concentration.

A Study on the Preparation of Halogen Free M-P Flame Retardant and Its Application to Composite Material (비할로겐 M-P 난연제 제조 및 복합재료 응용 연구)

  • Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.63-71
    • /
    • 2009
  • In order to improve flame retardancy, the halogen free organic melamine phosphate(M-P) flame retardant was synthesized from melamine and phosphoric acid by the reaction of precipitation. The ignition test was carried out preparing hybrid flame retardant compound($H_bFRC$) consisting of organic M-P and inorganic Mg$(OH)_2$ as a flame retardant in the polyolefin resins. The flame retardancy and mechanical properties of flame retardant aluminum composite panel($H_bFRC$-ACP) were performed to investigate the possibility of the composite material, which was contained M-P, as a inner core for $H_bFRC$-ACP. For this study, the results of ignition test indicate that a char formation and drip suppressing effect, and combustion time reduced as the content of M-P increased. The limited oxygen index(LOI) values were measured 17.4vol% and 31.5vol% for LDPE only and $H_bFRC$-3(M-P content: 15wt%), respectively. And it was verified that the $H_bFRC$-3 was needed more oxygen quantity with the increase of M-P content when it combustion. Also, the results from thermogravimetric analysis were observed endothermic peak at $350^{\circ}C$ and $550^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by the mixture of M-P and Mg$(OH)_2$. The LDPE-ACP (using only LDPE as a inner core), $35.13kW/m^2$ of heat release rate(HRR) and 13.43MJ/m2 of total heat release(THR) were measured while the $H_bFRC$-ACP, $10.44kW/m^2$ of HRR and 1.84MJ/m2 of THR were measured by results of cone calorimeter test. In case of $H_bFRC$-ACP, the average gas emission amount of CO and $CO_2$ could be decreased down to 25% and 20%, respectively, in comparison with LDPE-ACP. The mechanical properties such as tensile strength, bending strength and adhesion strength of $H_bFRC$-ACP were revealed slightly high values $54N/mm^2$, $152N/mm^2$ and 120N/25mm, respectively, compared with LDPE-ACP. It was confirmed that flame retardancy was improved with the synergy effect because of char formation by M-P and hydrolysis by Mg$(OH)_2$. The result of this study suggest that $H_bFRC$ can be applied for an adequate halogen free flame retardant composite material as a inner core for ACP.

Effects of the Degree of GO Reduction on PC-GO Chemical Reactions and Physical Properties (그래핀 옥사이드(GO)의 환원정도가 PC-GO 화학반응 및 물성에 미치는 영향)

  • Park, Ju Young;Shin, Jin Hwan;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • Polycarbonate (PC)/graphene oxide (GO) composites with 3 phr of GO were prepared by using a twin screw extruder at 240, 260, and $280^{\circ}C$ after mixing the solution with chloroform. It was confirmed by DSC and TGA that the glass transition temperature ($T_g$) of PC/GO composites were not changed and the thermal stability was the best in case of the extrusion temperature at $260^{\circ}C$. Thermo mechanical properties of PC/GO composites according to extrusion temperatures were measured by dynamic mechanical analysis (DMA). Storage moduli of PC/GO composites were higher than that of pure PC and there was no detectable changes at varying the extrusion temperature. Based on these results, the extrusion temperature of PC/GO composites was fixed at $260^{\circ}C$. The degree of the chemical reaction of PC/GO composites with respect to the GO reduction time was confirmed by the C-H stretching peak at $3000cm^{-1}$ and the degree of the chemical reaction was similar to that of GO when the reduction time was 1 h. A decrease in the complex viscosity as a function of the GO reduction time was detected by dynamic rheometer, which may be originated from the enhancement of GO dispersion by PC-GO reaction. The GO dispersion was confirmed by scanning electron microscope (SEM).

Chemo-Mechanical Analysis of Bifunctional Linear DGEBA/Linear Amine (DDM, DDS) Resin Casting Systems (DGEBA/방향족 아민(DDM, DDS) 경화제의 벤젠링 사이의 관능기 변화가 물성 변화에 미치는 영향에 대한 연구)

  • 명인호;정인재;이재락
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.71-78
    • /
    • 1999
  • To determine the effect of chemical structure of linear amine curing agents on thermal and mechanical properties, standard epoxy resin DGEBA was cured with diaminodiphenyl methane (DDM), diaminodiphenyl sulphone (DDS) in a stoichiometrically equivalent ratio. From this work, the effect of aromatic amine curing agents. In contrast, the results show that the DGEBA/DDS cure system having the sulfone structure between the benzene rings had higher values in the conversion of epoxide, density, shrinkage (%), glass transition temperature, tensile modulus and strength, flexural modulus and strength than the DGEBA/DDM cure system having methylene structure between the benzene rings, whereas the DGEBA/DDM cure system presented higher values in the maximum exothermic temperature, thermal expansion coefficient, and thermal stability. These results are caused by the relative effects of sulfone group having strong electronegativity and methylene group having (+) repulsive property and stem from the effect of the conversion ratio of epoxide group. The result of fractography shows that the each grain size of the DDM/DGEBA system with feather-like structure is larger than that of the DDS/DGEBA system.

  • PDF

Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization (비수계 분산중합으로 제조된 환경친화성 아크릴수지/나노클레이 복합재료의 특성 연구)

  • Kim, Yeongho;Lee, Minho;Jeon, Hyeonyeol;Lee, Young Chul;Min, Byong Hun;Kim, Jeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.120-126
    • /
    • 2016
  • Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites.

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

Polyvinylchloride Plasticized with Acetylated Monoglycerides Derived from Plant Oil (아세틸화 모노글리세라이드계 가소제 합성 및 PVC 가소성능에 관한 연구)

  • Lee, Sangjun;Yuk, Jeong-Suk;Kim, A-Ryeon;Choung, Ji Sun;Shin, Jihoon;Kim, Young-Wun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-49
    • /
    • 2017
  • To replace phthalate plasticizer for PVC, acetylated monoglyceride (AMG) plasticizers were prepared from plant oil and their plasticization effects were also investigated. Transesterification of coconut oil by glycerol followed by acetylation with acetic anhydride gave AMG-CoCo (Coco : Coconut Oil). In addition, AMG-GMO (GMO : Glycerol monooleate) and AMG-GMO-Epoxy were synthesized by acetylation and epoxidation with glycerol monooleate. It was found that the thermal stability of AMG plasticizers increased in the following order: AMG-GMO-Epoxy > AMG-GMO > AMG-CoCo and all three plasticizers were thermally more stable than those of common petroleum-based plasticizer DOP (Dioctyl phthalate). The tensile strain values of the PVC containing AMG compounds were ca. 770~810%, while tensile strength values were ca. 19~22 MPa, which were higher than those of PVC containing DOP. DMA (Dynamic Mechanical Analysis) results showed that the miscibility of AMG-GMO-Epoxy in PVC was excellent and the $T_g$ of PVC containing AMG-GMO-Epoxy at 50 phr decreased down to $24^{\circ}C$. Finally, the leaching experiment result showed that the weight loss values of PVC containing AMG-GMO and AMG-GMO-Epoxy at 50 phr were as low as 2 and 1%, respectively, indicating that they have high water migration resistance. The above findings suggested that AMG-GMO-Epoxy could be one of plant oil-based PVC plasticizers to replace DOP.

Characterization of Biodegradable Conductive Composite Films with Polyaniline(1) (폴리아닐린을 함유한 도전성 복합필름의 제조 및 특성 연구(1))

  • Lee, Soo;Seong, Eun-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.218-224
    • /
    • 2014
  • Biodegradable conductive composite films of polylactic acid(PLA) were prepared with various amounts of polyaniline(PAni) doped with dodecylbenzenesulphonic acid (DBSA) by solution blending technique to identify their mechanical and electric properties. 15 mol% of DBSA doped PAni was easily obtained by polymerizing of aniline in the presence of APS and DBSA in THF at $0^{\circ}C$. FE SEM characterization showed that PAni were well spread on the PLA domains. The tensile strength of composite film with 15 wt% of PAni was significantly decreased from $565.3kg_f/cm^2$ for PLA film itself to $309.7kg_f/cm^2$. Elongations of all PAni/PLA composite films were also decreased up to 3-6%. Electrical conductivity of $2.9{\times}10^{-3}$ S/cm could be achieved for the composite film containing 15 wt% of PAni-DBSA. Thermal stability of these composite films measured by thermogravimetric analysis(TGA) showed a slight decrease with the amount of PAni in PAni/PLA composite films at temperature lower than $300^{\circ}C$. However, the final weight of char was strongly depended with the amount of PAni in original composite films. Conclusively, PAni/PLA composite films containing more than a 15 wt% of PAni could be used for intercepting electromagnetic and preventing electrostatic applications.