• 제목/요약/키워드: Thermal stability and mechanical analysis

검색결과 241건 처리시간 0.035초

상변화 물질을 이용한 전자 장비 방열 설계의 수치 해석적 연구 (Numerical Analysis for Thermal Design of Electronic Equipment Using Phase Change Material)

  • 이동균;이원희;박성우;강성욱;조지현
    • 대한기계학회논문집B
    • /
    • 제41권4호
    • /
    • pp.285-291
    • /
    • 2017
  • 본 연구에서는 무인 항공 장비에 장착되는 전자 장비에 상변화 물질을 적용한 방열 설계를 수치적으로 진행하였다. 상변화 물질에 대한 열특성 실험을 통해 용융점($T_m$), 용융시 온도 증분(${\Delta}T_m$) 및 체적 팽창을 확인하였으며, 이를 통해 해석 모델 검증을 진행하였다. 용융시 용융점에서 발생하는 온도 정체 현상을 모사하기 위해 등가 비열법으로 계산한 열 물성치를 상변화 물질의 해석 모델 물성치로 입력하였으며, 실험 결과와의 비교를 통해 해석 모델의 신뢰성을 검증하였다. 검증된 해석 모델을 통해 핀과 함께 상변화 물질이 충진된 장비 하우징의 방열 성능을 향상시키고, 이를 통해 장비의 열적 안정성을 확보하였다. 현재 상변화 물질이 충진된 하우징의 방열 성능 극대화를 위해 핀 최적 설계에 대한 추가적인 연구가 진행 중에 있다.

Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.143-153
    • /
    • 2018
  • Thermal buckling of nonlocal flexoelectric nanoplates incorporating surface effects is analyzed for the first time. Coupling of strain gradients and electrical polarizations is introduced by flexoelectricity. It is assumed that flexoelectric nanoplate is subjected to uniform and linear temperature distributions. Long range interaction between atoms of nanoplate is modeled via nonlocal elasticity theory. The residual surface stresses which are usually neglected in modeling of flexoelectric nanoplates are incorporated into nonlocal elasticity to provide better understanding of the physic of problem. A Galerkin-based approach is implemented to solve the governing equations derived from Hamilton's principle are solved. The verification of obtained results is performed by comparing buckling loads of flexoelectric nanoplate with previous data. It is shown that buckling loads of flexoelectric nanoplate are significantly affected by thermal loading type, temperature change, nonlocal parameter, surface effect, plate thickness and boundary conditions.

등온 수직 원통표면을 연하여 흐르는 자연대류 유동의 파형 불안정성 (Instability Analysis of Natural Convection Flow along Isothermal Vertical Cylindrical Surfaces)

  • 유정열;윤준원;노승탁
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.161-169
    • /
    • 1989
  • 본 연구의 목적의 하나는 기본 유동장과 온도장의 비평행성을 고려함으로써 등온 수직 원통표면 바깥에서의 자연대류 유동의 파형 불안정성에 대한 안정성 문제를 구성하는 것이다. 다음에는 기본 유동양들의 평행성을 고려한 단순화 가정하에 수치해석을 수행하여 안정성 특성에 대한 원통 곡률의 영향을 정성적으로 검토하는 것이다.

큐브위성용 포고핀 기반 열선절단 분리장치의 열적 거동 분석 및 검증 (Numerical and Experimental Thermal Validation on Pogo-pin based Wire Cutting Mechanism for CubeSat Applications)

  • 손민영;채봉건;오현웅
    • 항공우주시스템공학회지
    • /
    • 제17권2호
    • /
    • pp.94-102
    • /
    • 2023
  • 큐브위성용 태양전지판 분리장치는 열선 또는 저항소자의 발열로 나일론선을 절단하여 구조물의 구속을 해제하는 나일론선 절단방식 구속분리장치가 주로 적용되고 있다. 일반적으로 태양전지판 조립체의 발사하중을 고려한 구조해석을 수행하여 구속분리장치의 설계가 이루어지고 있으나, 발사 이후 궤도 열환경에 대한 구속분리장치의 열적 검토 및 분석사례는 전무한 실정이다. 따라서, 본 논문에서는 현재 개발중인 큐브위성 STEP Cube Lab-II에 적용되는 나일론선 절단 기반 구속분리장치의 열적 안정성 평가를 수행하고자 한다. 위성이 POD (Picosatellite Orbital Deployer)에서 사출되고 태양전지판이 전개되기까지의 분리장치 온도 분포를 검토하여 분리장치의 허용온도 범위 내에서 안정적인 구속 분리가 될 수 있도록 분리장치에 대한 궤도 열해석을 수행하였다. 또한, 열해석 결과를 기반으로 열진공시험을 수행하여 분리장치의 설계를 검증하였다.

수평격판을 갖는 정사각형 밀폐공간내에서 자연대류 유동 및 열전달 (Natural Convective Flow and Heat Transfer in a Square Enclosure with a Horizontal Partition)

  • 정인기;김점수;송동주
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2304-2314
    • /
    • 1993
  • Natural convective flow and heat transfer in a two-dimensional square enclosure fitted with a horizontal partition are investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of length, position and thermal conductivity of the partition, and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection is resulted in a sudden rise of overall heat transfer, but the increase of length of partition is significantly restrained the increase of Nusselt number. The maximum heat transfer was shown just before the transition of the direction of oscillating flow. An oscillatory motion of flow was perfectly shown the stability with the decrease of the length of partition and Rayleigh number. Also, the heat transfer was raised with the increase of the thermal conductivity in proportion to the increase of the length of partition. The stability and oscillation of flow are affected by the position of partition.

Effect of Gamma Ray Irradiation on the Mechanical and Thermal Properties of MWNTs Reinforced Epoxy Resins

  • Shin, Bum Sik;Shin, Jin Wook;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • 방사선산업학회지
    • /
    • 제5권2호
    • /
    • pp.137-143
    • /
    • 2011
  • Epoxy resins are widely used as high performance thermosets in many industrial applications, such as coatings, adhesives and composites. Recently, a lot of research has been carried out in order to improve their mechanical properties and thermal stability in various fields. Carbon nanotubes possess high physical and mechanical properties that are considered to be ideal reinforcing materials in composites. CNT-reinforced epoxy system hold the promise of delivering superior composite materials with their high strength, light weight and multi functional features. Therefore, this study used multi-walled carbon nanotubes (MWNT) and gamma rays to improve the mechanical and thermal properties of epoxy. The diglycidyl ether of bisphenol A (DGEBA) as epoxy resins were cured by gamma ray irradiation with well-dispersed MWNTs as a reinforcing agent and triarylsulfonium hexafluoroantimonate (TASHFA) as an initiator. The flexural modulus was measured by UTM (universal testing machine). At this point, the flexural modulus factor exhibits an upper limit at 0.1 wt% MWNT. The thermal properties had improved by increasing the content of MWNT in the result of TGA (thermogravimetric analysis). However, they were decreased with increasing the radiation dose. The change of glass transition temperature by the radiation dose was characterized by DMA (dynamic mechanical analysis).

17cc급 자동차용 압축기 핵심부품의 구조 안정성에 관한 수치적 연구 (A Numerical Study on the Structural Stability Optimization of the Core Components of a 17cc Automotive Compressor)

  • 양용군;우위팅;진진;류성기
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.69-75
    • /
    • 2021
  • Fuel economy has always been a major issue for the automotive industry due to environmental concerns. In particular, it is known that only 5-20% of the energy generated in a car that mainly uses an internal combustion engine is converted to increase fuel efficiency, many methods have been proposed. Among these methods, weight reduction is most commonly used because it is the simplest and cheapest. Weight is always the main reason for energy consumption, therefore, reducing weight is the best way to increase fuel efficiency while simultaneously saving on material costs. To reduce the weight of a compressor, material substitution is used. However, aluminum (a lighter metal substitute) is more fragile than steel, therefore, structural stability must be verified through testing. In this paper, we performed a 3D analysis to investigate whether aluminum can be used without compromising structural stability. Our investigation included static analysis and thermal analysis. As a result, we found that an aluminum swash plate can be safely applied on a shaft instead of steel; it reduces weight while maintaining stability that is equal to or better than steel.

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory

  • Hendi, Asmaa A.;Eltaher, Mohamed A.;Mohamed, Salwa A.;Attia, Mohamed A.;Abdalla, A.W.
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.787-803
    • /
    • 2021
  • The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.

Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect

  • Souvik S. Rathore;Vishesh R. Kar;Sanjay
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.519-533
    • /
    • 2023
  • This work focuses on the dynamic analysis of thermal barrier coated straight and curved turbine blades modelled as functionally graded sandwich panel under thermal environment. The pre- twisted straight/curved blade model is considered to be fixed to the hub and, the complete assembly of the hub and blade are assumed to be rotating. The functionally graded sandwich composite blade is comprised of functionally graded face-sheet material and metal alloy core. The constituents' material properties are assumed to be temperature-dependent, however, the overall properties are evaluated using Voigt's micromechanical scheme in conjunction with the modified power-law functions. The blade model kinematics is based on the equivalent single-layer shear deformation theory. The equations of motion are derived using the extended Hamilton's principle by including the effect of centrifugal forces, and further solved via 2D- isoparametric finite element approximations. The mesh refinement and validation tests are performed to illustrate the stability and accurateness of the present model. In addition, frequency characteristics of the pre-twisted rotating sandwich blades are computed under thermal environment at various sets of parametric conditions such as twist angles, thickness ratios, aspect ratios, layer thickness ratios, volume fractions, rotational velocity and blade curvatures which can be further useful for designing the blade type structures under turbine operating conditions.

제동 패턴을 고려한 드럼 브레이크의 열적 거동 특성에 대한 연구 (A Study on the Thermal Behavior Characteristic of Drum Brake considering Braking Patterns)

  • 이계섭;손성수;양기현
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.145-154
    • /
    • 2006
  • Each part of drum brake system is loaded by continual mechanical force and thermal force every time of braking, so enough strength and stability are required. Thermal characteristic is one of the important factors in drum brake systems design. This paper presents the thermal performance such as temperature distribution and thermal contact stress of drum brake system considering several braking patterns; 80th heat braking test mode, heat fade braking test mode, general road mode, steep slope road mode and off road mode. Transient heat transfer analysis and Thermo elastic contact analysis is executed to obtain the temperature distribution, and to evaluate thermal stress of drum brake by using ABAQUS/Standard code. This procedure of analysis can effectively be used to improve the quality problem of brake system and to get design guideline of the new product.