• Title/Summary/Keyword: Thermal stabilities

Search Result 231, Processing Time 0.031 seconds

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

Effect of Cr2O3-MgO-Y2O3 Addition on Mechanical Properties of Mullite Ceramics (Cr2O3-MgO-Y2O3 첨가에 따른 뮬라이트 세라믹스의 기계적 성질)

  • Lim, Jin-Hyeon;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Jeong, Dae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.762-767
    • /
    • 2017
  • Mullite ($3Al_2O_3{\cdot}2SiO_2$) has emerged as a promising candidate for high-temperature structural materials due to its erosion resistance, chemical and thermal stabilities, relatively low thermal expansion coefficient, excellent thermal shock and creep resistances, and low dielectric constant. However, since the pure mullite sintering temperature is as high as $1,600{\sim}1,700^{\circ}C$, there is an increasing need for a sintering additive capable of improving the strength characteristics while lowering the sintering temperature. Herein we have tried to obtain the optimal sintering additive composition by adding MgO, $Cr_2O_3$, and $Y_2O_3$ to mullite, followed by sintering at $1,325{\sim}1,550^{\circ}C$ for 2 h. With additives of 2 wt% of MgO, 2 wt% of $Cr_2O_3$, 4 wt% of $Y_2O_3$, A density of $3.23g/cm^3$ was obtained for the sintered body at $1,350^{\circ}C$ upon using 2 wt% MgO, 2 wt% $Cr_2O_3$, and 4 wt% $Y_2O_3$ as additives. The three-point flexural strength of that was 275 MPa and the coefficient of thermal expansion (CTE) was $4.15ppm/^{\circ}C$.

Preparation of Solventless UV Curable Thermally Conductive Pressure Sensitive Adhesives and Their Adhesion Performance

  • Baek, Seung-Suk;Park, Jinhwan;Jang, Su-Hee;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.136-142
    • /
    • 2017
  • Using various compositions of thermally conductive inorganic fillers with boron nitride (BN) and aluminum oxide ($Al_2O_3$), solventless UV-curable thermally conductive acrylic pressure sensitive adhesives (PSAs) were prepared. The base of the PSAs consists of 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and isobornyl acrylate.The compositions of the thermally conductive inorganic fillers were 10, 15, 20, and 25 phr in case of BN, and 20:0, 15:5, 10:10, 5:15, and 0:20 phr in case of $BN/Al_2O_3$. The adhesion properties like peel strength, shear strength, and probe tack, and the thermal conductivity of the prepared PSAs were investigated with different thermally conductive inorganic filler contents. There were no significant changes in photo-polymerization behavior with increasing BN or $BN/Al_2O_3$ content. Meanwhile, the conversion rate and transmittance of the PSAs decreased and their thermal stabilities increased with increasing BN content. Their adhesion properties were also independent of the BN or $BN/Al_2O_3$ content. The dispersibility of BN in the acrylic PSAs was better than that of $Al_2O_3$ and it ranked the thermal conductivity in the following order: BN > $BN/Al_2O_3$ > $Al_2O_3$.

Preparation and Characterization of Vapor-Grown Carbon Nanofibers-Reinforced Polyimide Composites by in-situ Polymerization (In-situ 중합법에 의한 기상성장 탄소나노섬유/폴리이미드 복합재료의 제조 및 물성)

  • Park, Soo-Jin;Lee, Eun-Jung;Lee, Jae-Rock;Won, Ho-Youn;Moon, Doo-Kyung
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.117-122
    • /
    • 2007
  • In this work, the mechanical and electrical properties, and thermal stability of vapor-grown carbon nanofibers/polyimide (VGCNFs/PI) composite film synthesized by in-situ polymerization were investigated in terms of tensile properties, volume resistivity and thermogravimetric analysis (TGA), respectively. From the results, the addition of VGCNFs with a certain amount into polyimide led to obvious improvement in tensile strength. The volume resistivity of the films was decreased with increasing the VGCNFs content and the electrical percolation threshold appeared between 1 and 3 wt% of VGCNFs content, which was probably caused by the formation of interconnective structures among the VGCNFs in a composite system. The thermal stability of the film was higher than that of pure PI one. This result indicated that the crosslinking of VGCNFs/PI Composites was enhanced by well-distribution of YGCNFs in PI resin, resulting in the increase of the thermal stability of the resulting composites.

Evaluation of the repair capacities and color stabilities of a resin nanoceramic and hybrid CAD/CAM blocks

  • Bahadir, Hasibe Sevilay;Bayraktar, Yusuf
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.140-149
    • /
    • 2020
  • PURPOSE. This study evaluated the color stabilities of two computer-aided design and computer-aided manufacturing (CAD/CAM) blocks and a nanofill composite resin and the microtensile bond strength (µTBS) between the materials. MATERIALS AND METHODS. Twelve specimens of 4 mm height were prepared for both Lava Ultimate (L) and Vita Enamic (E) CAD/CAM blocks. Half of the specimens were thermocycled (10,000 cycle, 5° to 55℃) for each material. Both thermocycled and non-thermocycled specimens were surface treated with one of the three different methods (Er,Cr:YSGG laser, bur, or control). For each surface treatment group, one of the thermocycled and one of non-thermocycled specimens were restored using silane (Ceramic Primer II), universal adhesive (Single Bond Universal), and nanofill composite resin of 4-mm height (Filtek Ultimate). The other specimens were restored with the same procedure without using silane. For each group, 1 × 1 × 8 mm bar specimens were prepared using a microcutting device. Bar specimens were thermocycled (10,000 cycle, 5° to 55℃) and microtensile tests were performed. Staining of the materials in coffee solution was also compared using a spectrophotometer. Data were analyzed using one-way ANOVA, t-test and post-hoc Scheffe tests. RESULTS. µTBS were found similar between the thermocycled and non-thermocycled groups (P>.05). The highest µTBS (20.818 MPa) was found in the non-thermocycled, bur-ground, silane-applied E group. Silane increased µTBS at some E groups (P<.05). Composite resin specimens showed more staining than CAD/CAM blocks (P<.05). CONCLUSION. CAD/CAM blocks can be repaired with composite resins after proper surface treatments. Using silane is recommended in repair process. Color differences may be shown between CAD/CAM blocks and the nanofill composite after a certain time period.

Synthesis of photopolymer containing chalconyl and cholesteryl moieties and their LCD applications (Chalconyl 과 Cholesteryl 기를 함유한 광폴리머의 합성 및 LCD 응용)

  • 황정연;서대식;김재형;손정호;서동학
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.137-140
    • /
    • 2000
  • Synthesis of a new copoly (M4Ch-ChMA), copoly ((4-methacryloyloxy) chalcone-cholestery methacrylate), with chalconyl and cholesterol moiety characteristics for photoalignment materials was investigated. Good thermal stabilities of the synthesized copolymers are confirmed by thermogravimetric analysis (TGA) measurement. The pretilt angles of the nematic liquid crystal (NLC) are reduced as UV exposure time is increased on the copolymer surfaces. A pretilt angle of 81$^{\circ}$in NLC was observed with UV exposure of 3 min on the copolymer-3 surface. The NLCs pretilt angle is attributable to increased chalcone with increasing the UV exposure time.

  • PDF

Recent Advances in Polybenzimidazole (PBI)-based Polymer Electrolyte Membranes for High Temperature Fuel Cell Applications

  • Vijayakumar, Vijayalekshmi;Kim, Kihyun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.643-651
    • /
    • 2019
  • Polybenzimidazole (PBI), an engineering polymer with well-known excellent thermal, chemical and mechanical stabilities has been recognized as an alternative to high temperature polymer electrolyte membranes (HT-PEMs). This review focuses on recent advances made on the development of PBI-based HT-PEMs for fuel cell applications. PBI-based membranes discussed were prepared by various strategies such as structural modification, cross-linking, blending and organic-inorganic composites. In addition, intriguing properties of the PBI-based membranes as well as their fuel cell performances were highligted.

Liquid crystal alignment effect and synthesis of photo-polymer material containing cholesteryl moiety for homeotropic alignment (Cholesteryl 기를 함유한 수직배향용 광폴리머 재료의 합성 및 배향 효과)

  • 황정연;서대식;한은주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.770-775
    • /
    • 2000
  • A new photo-polymer material of the copoly (PM4Ch-ChMA), copoly (poly (4-methacryloyloxy)chalcone-cholesteryl methacrylate) for homeotropic alignment was synthesized and the electro-optical (EO) performance for the photo-aligned vertical-aligned (VA)-LC display (LCD) was studied. Good thermal stabilities of synthesized copolymer were obtained by TGA(Thermogravimetric Analysis) measurement. Good voltage-transmittance (V-T) and response time characteristics for the photo-aligned VA-LCD with polarized UV exposure in oblique direction($\theta$$_{i}$=30$^{\circ}$) on a copolymer-1 (2%) surfaces for 1 min were observed. but, light leakage in the off-state was observed. Therefore, we achieved excellent V-T and response time characteristics for the photo-aligned VA-LCD with UV exposure on a copolymer-3 (30%) surfaces for 3 min.n.

  • PDF

Fabrication of Hybrid Films Using Titanium Chloride and 2,4-hexadiyne-1,6-diol by Molecular Layer Deposition

  • Yun, Gwan-Hyeok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.418-418
    • /
    • 2012
  • We fabricated a new type of hybrid film using molecular layer deposition (MLD). The MLD is a gas phase process analogous to atomic layer deposition (ALD) and also relies on a saturated surface reaction sequentially which results in the formation of a monolayer in each sequence. In the MLD process, polydiacetylene (PDA) layers were grown by repeated sequential surface reactions of titanium tetrachloride and 2,4-hexadiyne-1,6-diol with ultraviolet (UV) polymerization under a substrate temperature of $100^{\circ}C$. Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of the hybrid films. Polymerization of the hybrid films was confirmed by infrared (IR) spectroscopy and UV-Vis spectroscopy. Composition of the films was confirmed by IR spectroscopy and X-ray photoelectron (XP) spectroscopy. The titanium oxide cross-linked polydiacetylene (TiOPDA) hybrid films exhibited good thermal and mechanical stabilities.

  • PDF

On Compositional Convection in Near-Eutectic Solidification System Cooled from a Bottom Boundary

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.868-873
    • /
    • 2017
  • Natural convection is driven by the compositional buoyancy in solidification of a binary melt. The stabilities of convection in a growing mushy layer were analyzed here in the time-dependent solidification system of a near-eutectic melt cooled impulsively from below. The linear stability equations were transformed to self-similar forms by using the depth of the mushy layer as a length scale. In the liquid layer the stability equations are based on the propagation theory and the thermal buoyancy is neglected. The critical Rayleigh number for the mushy layer increases with decreasing the Stefan number and the Prandtl number. The critical conditions for solidification of aqueous ammonium chloride solution are discussed and compared with the results of the previous model for the liquid layer.