• Title/Summary/Keyword: Thermal spalling

Search Result 75, Processing Time 0.024 seconds

Creep Behavior of High-Strength Concrete with Nylon Fibers at Elevated Temperatures (고온을 받은 나일론 섬유 보강 고강도 콘크리트의 크리프 거동)

  • Kim, Young-Sun;Lee, Tae-Gyu;Kim, Woo-Jae;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.627-636
    • /
    • 2011
  • Recently, to prevent explosive spalling of high-strength concrete (HSC) members, the usage of nylon fiber instead of polypropylene fiber has increased. Past experimental studies have been conducted to examine the spalling and mechanical properties of HSC with nylon fibers when exposed to elevated temperature. However, the previous studies on HSC with nylon fibers subjected to high temperatures were performed only on the properties such as spalling, compressive strength, and elastic modulus rather than investigations on to the behaviors such as thermal strain, total strain, steady state creep, and transient creep. Therefore, in this study thermal strain, total strain, steady state creep, and transient creep of HSC mixed with nylon fibers with water to binder ratio of 0.30 to 0.15 were tested. The experimental results showed that nylon fibers did not affect the performance of HSC with nylon fibers at high temperatures. However, HSC with nylon fibers generated a larger transient creep strain than that of HSC without fibers and normal strength concrete.

An Experimental Study on Thermal Damage and Spalling of Concrete Lining in Tunnel Fire (터널화재시 콘크리트 라이닝의 폭렬 및 화재손상에 관한 실험적 연구)

  • Kim, Heung-Youl;Kim, Hyung-Jun;Cho, Kyung-Suk;Lee, Jae-Sung;Kwan, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.110-120
    • /
    • 2009
  • In tunnel, though the frequency of fire occurrence is relatively lower than other structures, the characteristics of sealed space tends to cause the temperature to rapidly rise to more than $1000^{\circ}C$ within 5minutes after fire, which might eventually lead to a large fire that usually results in a loss of lives and the damage to the properties, not to mention a huge cost necessary for repair and maintenance after fire. We have developed various conditions of the heating furnace and the method to install a thermo couple within the furnace based on EFNARC and KS F 2257-1. Referring to tunnel fire scenarios, it clarified the heat transfer characteristics of concrete PC panel lining depending on fire intensity (ISO, $1^{\circ}C$/SEC, MHC, RWS), and to identify the range of thermal damage, the evaluation was carried out using ITA standard. As a result, 30mm under ISO fire condition, 20mm under $1^{\circ}C$/SEC, 100mm under MHC and 50mm under RWS were measured. And when it comes to spalling, 30mm was measured under RWS and MHC.

Experimental Studies on the Effect of Various Design Parameters on Thermal Behaviors of High Strength Concrete Columns under High Temperatures (다양한 설계변수에 따른 고강도 콘크리트 기둥의 열적 거동 분석을 위한 실험 연구)

  • Shin, Yeong-Soo;Park, Jee-Eun;Mun, Ji-Young;Kim, Hee-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • Although concrete is considered as fire proof materials, high strength concrete shows severe material and structural damages when exposed to fire. To understand such damages in high strength concrete structures, the effects of various design parameters and fire condition on the thermal behaviors of high strength concrete structures are investigated in this study. In order to achieve this goal, fire tests are performed on high strength concrete columns with different fire conditions and design parameters including cross sectional area, cover thickness, and reinforcement alignment. To investigate thermal behaviors, temperature distributions and amount of spalling are measured. In overall, the columns show rapidly increasing inner temperatures between 30~60 mins of the fire tests due to spalling. In detail, the higher temperature distributions are observed from the columns with the larger cross section and less cover thickness. Moreover, among the columns with same reinforcing ratio, larger number of reinforcements with the smaller diameter causes the higher temperature distribution. The findings from the experimental study allow not only understanding of thermal behaviors of high strength concrete columns under fire, but also guidance in revising fire safety design.

State-of-the-Art Research and Experimental Assessment on Fire-Resistance Properties of High Strength Concrete (고강도 콘크리트의 내화 특성에 관한 기존연구 고찰 및 실험적 연구)

  • Kim, Woo-Suk;Kang, Thomas H.K.;Kim, Wha-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.28-39
    • /
    • 2014
  • This paper reviews past literatures relevant to fire-resistance properties of high strength concrete and investigates spalling mechanism of high strength concrete in fire. First, literatures were reviewed on spalling occurrence and fire-resistance methods. Second, a chemical change of concrete components in an elevated temperature was presented. Finally, the mechanism of the spalling occurrence and spalling resistance were examined in terms of hybrid fiber content. The focus of the experimental study as part of this research is to investigate the effects of fire on the variation of thermal properties of high strength concrete, which tends to be used in super tall buildings. This experimental study was devised to investigate the fire-resistance performance of high strength concrete containing hybrid fibers. A total of 48 test specimens were exposed to high temperature ranging from $100^{\circ}C$ to $700^{\circ}C$, including room temperature (${\sim}20^{\circ}C$). Test results provide valuable information regarding fire-resistance properties of strength concrete with 100 MPa or greater.

Spalling Reduction Method of High-Strength Reinforced Concrete Columns Using Insulating Mortar (단열모르타르를 이용한 고강도콘크리트 기둥의 폭렬저감 방안)

  • Yoo, Suk-Hyeong;Lim, Seo-Hyeong
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.8-13
    • /
    • 2011
  • High Strength Concrete (HSC) has a disadvantage of the brittle failure under fire due to the spalling. The studies on spalling control method of new constructed HSC buildings were performed enough, but the studies on existing buildings are insufficient. The new inorganic refractory mortar is developed in this study. The insulating capacity is enhanced by using light weight fine aggregate and polypropylene (PP) fiber. In results of material test, the thermal conductivity of light weight fine aggregate get lower than general fine aggregate. And in results of column test, the fire resisting time is delayed 20 minutes by using light weight fine aggregate, 10 minutes by increasing finishing depth from 10 mm to 20 mm and 4 minutes by using 0.6 % PP fiber.

Numerical analysis of high-strength concrete exposed elevated temperature (고온에 노출된 고강도 콘크리트 기둥의 수치해석)

  • Seo, Yeon-Joo;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.21-24
    • /
    • 2005
  • A computational analysis of hygro-thermal and mechanical behaviour of concrete column at high temperature is presented. The objective of this study is to develop a finite difference model that simulates coupled heat and transport phenomena in reinforced concrete structures exposed to rapid heating conditions such as fires. The theoretical basis for the integrated finite difference method is presented to describe a powerful numerical technique for solving of fluid flow in porous media. The numerical results predict the phenomena of 'moisture clog' and the explosive spalling of concrete under fire. The investigations show that high-strength concrete(HSC) and normal-strength concrete(NSC) exposed to high temperature have different pore pressure buildup dependent on porosity, permeability and moisture contents. HSC has more possibility than NSC on spalling.

  • PDF

Evaluation on Spalling Properties of Polypropylene Fiber reinforced Concrete by Restrained Ring-type Test (구속 링형 시험에 의한 PP섬유 혼입 콘크리트의 폭렬 특성 평가)

  • Han, Cherl-Hwan;Kim, Gyu-Yong;Yoon, Min-Ho;Hwang, Eui-Chul;Baek, Jae-Uk;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.124-125
    • /
    • 2017
  • In this study, the spalling properties of Polypropylene reinforced concrete were evaluated by the restrained ring-type test. As a result of the experiment with the fiber mixture ratio set at 0, 0.15 vol.%, The PP fiber reinforced specimen showed lower water vapor pressure as a whole than the Plain specimen, but the restraint stress was measured to be higher. This is thought to be due to the fact that higher thermal stresses were applied in the PP fiber reinforced test specimen.

  • PDF

Failure Mechanisms for Zirconia Based Thermal Barrier Coatings

  • Lee, Eui Y.;Kim, Jong H.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.340-344
    • /
    • 1998
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2$-8wt.% $Y_2O_3$ ceramic coating during cyclic oxidation. $Al_2O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_2O_4$ and $Ni(Al, Cr)_2O_4$ during cyclic oxidation. It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr, Al)_2O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

Failure Mechanisms of Thermal Barrier Coatings Deposited on Hot Components in Gas Turbine Engines

  • Lee E. Y.;Kim J. H.;Chung S. I.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.106-111
    • /
    • 2005
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2-8wt.\% Y_{2}O_3$ ceramic coating during cyclic oxidation. $Al_{2}O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_{2}O_4 and Ni(Al,Cr)_{2}O_4$ during cyclic oxidation It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr,Al)_{2}O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

Fabrication of Porous Mullite Ceramics and Its Properties (다공성 Mullite 세라믹스 제조 및 그 특성)

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.275-281
    • /
    • 1994
  • Mullite ceramics have recently been utilized as ceramic gas filters for high-temperature treatment of solid wastes due to their low thermal expansion coefficient and high refractoriness under load. In this experiment, mechanical, thermal and microstructural properties of porous mullite ceramics, which were used as carriers and high-temperature gas filters in food industry, were investigated as a function of starting raw materials. Porous mullite ceramics showed different microstructures depending on their starting materials. The specimen M2 had excellent resistance to thermal spalling and high mechanical strength. The average pore size varied from 0.3 ${\mu}{\textrm}{m}$ to 16.6 ${\mu}{\textrm}{m}$, and porous mullite ceramics fabricated by thermal decomposition of Al(OH)3 had very large pores and broad distribution of pore size.

  • PDF