• Title/Summary/Keyword: Thermal resistance

Search Result 2,928, Processing Time 0.033 seconds

Cavitation Damage Characteristics of Al and Zn Arc Thermal Spray Coating Layers for Hull Structural Steel (선체 구조용 강재에 대한 Al과 Zn 아크용사코팅 층의 캐비테이션 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.32-39
    • /
    • 2016
  • In this study, Al and Zn arc thermal spray coatings were carried out onto the substrate of SS400 steel to improve corrosion resistance and durability of hull structural steel for ship in marine environment. Therefore cavitation-erosion test was conducted to evaluate the durability of painted and thermal spray coated specimens. And then the damaged surface morphology and weight loss were obtained to compare with each other, respectively. As a result, the painted specimen was the poorest cavitation resistance characteristics because surface damage behavior appeared to be exfoliated in bulk shape during the cavitation experiment. And Zn thermal spray coating layer presented the significant surface damage depth due to relatively low surface hardness and local cavitation damage tendency. On the other hand, as a result of the weight loss analysis, the painting layer presented the poorest cavitation resistance and the Al thermal spray coating layer relatively showed the best results after cavitation experiment.

Flame Retardance and Thermal Resistance of CPE Rubber Compound Containing a Phosphoric Ester Flame Retardant BDPDH (인산 에스테르게 난연제 BDPDH를 첨가한 CPE 고무재료의 난연성 및 내열성)

  • Park, Hyun-Ho;Lee, Chang-Seop
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.72-80
    • /
    • 2003
  • Phosphoric ester compound was employed as thermal resistant and flame retardant for chlorinated polyethylene(CPE) rubber material which is used to prepare automotive oil cooler hose. Cure characteristics, physical properties, thermal resistance, and flame retardation of CPE rubber compounds were investigated. CPE rubber which has excellent properties such as cold resistance and chemical corrosion resistance, and is inexpensive in price than existing ethyleneacrylate rubber(EAR) was used to prepare a rubber compound useful for hose. A non-halogen flame retarding agent N,N'-bis- (diphenylphosphoro) diaminohexane(BDPDH), which is condensed phosphoric ester, was synthesized and it was mixed to CPE rubber material with the range of $0{\sim}30 phr$. From the test results, rheological properties, heat resistance, and flame retardance of CPE rubber compounds were found out to be much increased. The optimum content of BDPDH to rubber which gives maximum effect on thermal resistance and flame retardation, within the range of tolerable specification for rubber materials, was determined to be 20 phr.

Improved Thermal Resistance of an LED Package Interfaced with an Epoxy Composite of Diamond Powder Suspended in H2O2 (과산화수소 적용 TIM의 LED 패키지 열특성 개선효과)

  • Choi, Bong-Man;Hong, Seong-Hun;Jeong, Yong-Beom;Kim, Ki-Bo;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.221-224
    • /
    • 2014
  • We present a method for manufacturing a TIM used for packaging a high-power LED. In this method a mixture of diamond powder and hydrogen peroxide is used as a filler epoxy. The thermal resistance of the TIM with hydrogen peroxide was improved by about 30% over the thermal resistance of the TIM without hydrogen peroxide. We demonstrate that as a result the heat generated from the chip is easily dissipated through the TIM.

Thermal Property and Fire Resistance of Cellulose Insulation (섬유질 단열재의 열적 특성 및 내화성능)

  • Kwon, Young-Cheol;Seo, Seong Yeon;Kim, Sung Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2005
  • Cellulose insulation is primarily manufactured from recycled newsprint and treated with fire retardants for the fire resistance. Thanks to the fire retardants, it is not combustible and flammable. In addition to that, Its thermal resistance is much better than that of fiberglass or rock wool. It is made from waste paper and easily decayed when it is demolished, and it has small embodied energy. So it is very environment-friendly building material. For broader use of cellulose insulation in buildings in Korea, it is necessary to test its physical performance to compare the results with the requirements on the Korean Building Code. To this end, apparent thermal conductivity (ka) measurements of Korean-made loose-fill cellulose insulations were recently completed using equipment that was built and operated in accordance with ASTM C 518 and the fire resistance was tested in accordance with ASTM C 1485. Korean loose-fill cellulose has thermal conductivity about 5% greater than the corresponding U.S. product at the same density. This is likely due to differences in the recycled material being used. Both spray-applied and loose-fill cellulose insulation lose about 1.5% of their thermal resistivity for $5.5^{\circ}C$ increase in temperature. The fire resistance of cellulose insulation is increased in linear proportion to the increase of the rate of fire retardant. Thanks to the high fire resistance, cellulose insulation can be used as a substitution of Styrofoam or Urethane foam which is combustible. The thermal conductivity of cellulose insulation was $0.037-0.043W/m{\cdot}K$ at the mean specimen temperature from $4-43^{\circ}C$. It corresponds to the thermal resistance of "Na Grade" according to the Korean Building Code. The effect of chemical content on thermal conductivity was negligible for all but the chemical-free specimen which had the highest value for the thermal conductivity over the temperature range tested. The thermal resistance of cellulose insulation is better than that of fiberglass or rock wool, and its fire resistance is higher than that of Styrofoam or Urethane foam. Therefore it can be substituted for those above considering its physical performance. Cellulose insulation is no more expensive than Styrofoam or rock wool, so it is recommended to use it more widely in Korea.

Experimental Investigation on Thermal Characteristics of Heat Pipes Using Water-based MWCNT Nanofluids (물 기반 탄소나노튜브 나노유체 히트파이프의 열적 특성에 관한 실험적 해석)

  • Ha, Hyo-Jun;Kong, Yu-Chan;Do, Kyu-Hyung;Jang, Seok-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.528-534
    • /
    • 2011
  • In this paper, thermal characteristics of cylindrical grooved wick heat pipes with water-based MWCNT nanofluids as working medium are experimentally investigated. Volume fractions of nanoparticles are varied with 0.1% to 0.5%. Transient hot wire method developed in house is used to measure the thermal conductivity of nanofluids. It is enhanced by up to 29% compared to that of DI water. The thermal resistances and temperature distributions at the surface of the heat pipes are measured at the same evaporation temperature. The experimental results show that the thermal resistance of the heat pipes with water-based MWCNT nanofluids as working fluid is reduced up to 35.2% compared with that of heat pipe using DI water. The reduction rate of thermal resistance is greater than the enhancement rate of thermal conductivity. Finally, based on the experimental results, we present the reduction of the thermal resistances of the heat pipes compared with conventional heat pipes cannot be explained by only the thermal conductivity of water-based MWCNT nanofluids.

A Study on the Characteristics of the Wear Resistance Thermal Spray Coatings (내마모 용사 코팅층의 특성에 관한 연구)

  • Han Myeong Seop;Lee Sang Eok;Kim Dae Yeong
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.211-212
    • /
    • 2004
  • Characteristics of the wear resistance thermal sprayed coatings was investigated in order to determine proper coating process. Hardness evaluation and microstructural observation were conducted to find relationship between coating characteristics and its wear performance. It was found that HVOF process would give better properties than arc thermal process in terms of hardness and adhesion strength which resultantly determine wear performance of the coatings.

  • PDF

Studies on Thermal Resistance Bacteria. (Part. 1) (내열성 세균에 관한 연구 1)

  • 이계호;장건형
    • Korean Journal of Microbiology
    • /
    • v.3 no.1
    • /
    • pp.11-14
    • /
    • 1965
  • The purpose of this paper is to study on the morphological and physiological nature generally observed for the identifications, and the four strains of thermal resistanting aerobic bacteria isolated from swelled cans and the different soils collected from the wide area in Korea. The results obtained in the light of the Bergey's Manual for the identification of the bacteria, have been shown that the four strains of bacteria are pertained to Bacillus subtilis. The optimum temperature, pH and the thermal resistance (2.5 min. at $121^{\circ}C$) of the bacteria have been measured.

  • PDF

Heat Transfer Analysis of Freezing Processes Including Thermal Resistance of Mold(I) - One - dimensional Analysis of Saturated Liquid - (용기를 고려한 응고과정의 열전달 해석(I) - 포화액의 일차원 해석 -)

  • Yoo, Jai Suk
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.377-381
    • /
    • 1988
  • Effects of thermal resistance of mold during freezing processes have been investigated. Saturated liquid is chosen to present one-dimensional quasi-steady solution and this solution is compared with numerical solutions. Front tracking finite element method has been applied for the numerical solutions. Results show that mold should be considered as well as phase change material except the cases when the very thin mold with relatively high thermal conductivity is used.

  • PDF

A Study on the MDTF for Uncooled Infrared Ray Thermal Image Sensors with High Thermal Coefficient of Resistance (높은 열저항 계수를 가지는 비냉각형 적외선 열영상 이미지 센서용 MDTF(Metal-dielectric Thin Film)에 관한 연구)

  • Jung, Eun-Sik;Jeong, Se-Jin;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.366-371
    • /
    • 2012
  • In this paper, fabricated by MEMS uncooled micro-bolometer detector for the study in the infrared sensitivity enhancement. Absorption layer SiOx-Metal series MDTF (metal-dielectric thin film) by high absorption rate and has a high thermal coefficient of resistance, low noise characteristics were implemented. Then MDTF were made in a vacuum deposition method. And MDTF for the analysis of the physical properties of silicon wafers were fabricated, TCR (temperature coefficient of resistance) value was made in order to measure the glass wafer and FT-IR (Fourier Transform Infrared spectroscopy) values were made in order to measure the germanium window. The analyzed results of MDTF -3 [%/K] has more characteristics of the TCR. And 8~12 um wavelength region close to 70% in the absorption characteristic.