• Title/Summary/Keyword: Thermal pump

Search Result 605, Processing Time 0.024 seconds

A Study on the Thermal Pump of the Hot Water Boiler (온수 보일러용 열구동 펌프에 관한 연구)

  • Yeom, Han-Gil;Kim, Uk-Joong;Kim, Chang-Ju
    • 연구논문집
    • /
    • s.30
    • /
    • pp.15-23
    • /
    • 2000
  • In this study, develop the thermal pump using water evaporation and condensation. Vapor from heating room moves up to pumping room and press the water of pumping room. Consequently water is pumped out to water tank. Then hot vapor direct contact with cold water in condensing room after pumping process. At this time, pressure of condensing room is down to-5kPa and suck in water of tank. This pump executes self ping and good durability because of no mechanical moving parts. Thermal pump is pumped cyclic so that, this pump is not used single. Therefore thermal pump of hot water boiler used to multi-stage for stable pumping rate. As the result of performance test, the developed thermal pump proves pumping action of water evaporation/condensation. And total volume flow rate is 500liter during one hour. If three thermal pump is installed parallel, this pump can use to the hot water boiler in the 300,000kcal/h class.

  • PDF

Effect of heat pump performance improvement by use of thermal tank with temperature seperation plate (격판분리 축열조의 히트펌프 성능개선 효과)

  • Moon, Jongpil;Lee, Sunghyoun;Kwon, Jinkyung;Kang, YounKoo;Lee, Sujang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.80.1-80.1
    • /
    • 2011
  • This study was carried out in order to estimate the effect of heat pump performance by use of thermal tank with 3 seperation plates which were able to divide thermal tank into 3 chambers that have different temperatures levels. For testing the effect of developed thermal tank which was installed for supplying the heat to the paprika greenhouse in Jinju city. The volume of thermal storage tank was designed for $110m^3$ which was able to cover 30% of heating capacity. The temperature difference was 3 degree Celcius between high temperature and low temperature when only heating circulation was made from heat pump to thermal tank. but 5.5 degree Celcius difference was made when heating circulation of heat pump to thermal thank and hot water supplying circulation of thermal tank to greenhouse was done simultaneously. As a result of this study showed that COP of heat pump was increased by 15% or more than that of using normal thermal tank because heat pump was able to take 3 ~ 5 degree Celcius lower thermal thank water constantly.

  • PDF

Influences of Pump Spot Radius and Depth of Focus on the Thermal Effect of Tm:YAP Crystal

  • Zhang, Hongliang;Wen, Ya;Zhang, Lin;Fan, Zhen;Liu, Jinge;Wu, Chunting
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.458-465
    • /
    • 2019
  • The thermal effect and the light output of a laser crystal under different pumping depths were reported., Based on the thermal model of a single-ended pumped Tm:YAP crystal, the thermal stress coupled model used Comsol to theoretically calculate the effect of changing the pump spot size and pump depth on crystal heat distribution and stress distribution. The experimental results showed that the laser output power first increased and then decreased with increasing pump spot size. As the depth of focus increased, the laser output power first increased and then decreased. The experimental results were consistent with the theoretical simulation results. The theory of pump spot radius and depth of focus in this paper provided an effective simulation method for mitigating thermal effects, and provided theoretical supports for laser crystals to obtain higher laser output power.

Development of comfort algorism for Indoor temperature chagne in Heating System (변동환경 대응을 위한 난방System의 쾌적 알고리즘 개발)

  • Kim, Dong-Gyu;Jeong, Yong-Hyun;Kum, Jong-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2006
  • This study investigated physiology and psychological response of subjects, when heat pump was operated long time within comfort temperature range. Eight subjects were participated for the experiment. Their age was from 22 to 25 years old. The results of this experiment will propose basic data for improving comfort control algorithm in fluctuating environment by using heat pump. When indoor temperature was controlled by heat pump, the conclusion was as follows. 1) When votes of subjects was considered, the thermal comfort neutrality or lower range helped formation of comfort sensation for subjects. 2) When room temperature was lower, thermal comforts of shoulder, knee and foot with subjects thermal comfort showed high correlation. And when room temperature was higher, thermal comfort of face region with subjects thermal comfort showed high correlation. 3) The necessity of temperature change after 50 minutes from initially operating heat pump demands the additional analysis against the physiological signal.

A Study on the Thermal Characteristics of Dry Vacuum Pump with Vertical Screws (수직형 건식 진공 스크류 펌프의 열특성에 대한 연구)

  • Chang, Moon-Suk;Park, Jae-Hyun;Kim, Soo-Tae;Kim, Il-Gon;Cho, Seong-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, analysis and experiments were carried out on temperature distributions and thermal deformations in a dry vacuum pump with vertical screws for safe operation. When a vacuum pump is working, it is necessary to get rid of the heat generated by the friction of bearings and the compression of air to prevent the vacuum pump from being damaged by interference between two screws and housing through thermal deformation. Additional cooling was proposed by using oil flow through the inner channel of the rotating axis for lower temperature control of the vacuum pump. Analysis and experimental results were compared in terms of temperature distribution and thermal deformation of the vacuum pump, and two sets of results matched reasonably well. These results for a dry vacuum pump with vertical screws can be used in similar model development and can minimize errors in design and manufacture by providing reasonably accurate prediction in advance.

Study on the Optimum Design of Ground Source Heat Pumps (지열원 히트펌프 시스템의 최적 설계 기법 연구)

  • Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.35-42
    • /
    • 2018
  • Among the various ground source heat pump systems, vertical-type heat pump systems have been distributed greatly. Most of the vertical-type ground source heat pump systems have been designed based on the Korean Ministry of Knowledge Economy Announcement in Korea. In this study, the design process of the vertical-type ground source heat pump system in the announcement was analyzed, and the effects of the design parameters on the ground loop heat exchanger were investigated. Borehole thermal conductivity was the highest dominant design parameter for ground loop heat exchangers. The borehole thermal conductivity was changed according to the pipe and grout thermal conductivity. For optimal design of the ground heat pump system, it is highly recommended that the design process in the announcement will be revised to adopt the various tubes and grout which have higher thermal conductivity. In addition, the certification standard for heat pump unit should be revised to develop the heat pump with a small flow rate.

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement

  • Wu, Yulin;Yuan, Huijing;Shao, Jie;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.121-126
    • /
    • 2009
  • The internal flow field in a centrifugal pump working at the several flow conditions has been measured by using the particle image velocimetry (PIV) technique with the laser induced fluorescence (LIF) particles and the refractive index matched (RIM) facilities. The impeller of the centrifugal pump has an outlet diameter in 100mm, and consists of six two-dimensional curvature backward swept blades of constant thickness. Measured results give reliable flow patterns in the pump. It is obvious that application of LIF particle and RIM are the key methods to obtain the right PIV measured results in pump internal flow.

A Study on Control Method of Thermal Storage Tank for Varying Thermal Load in Heat Pump Water Heater (열펌프 온수기의 부하 대응 축열조 제어에 관한 연구)

  • Nam, Hyun-Kyu;Bai, Cheol-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.330-335
    • /
    • 2012
  • A characteristic behavior of the thermal storage tank for varying thermal load in heat pump water heater was studied. The control method was suggested and applied. By measuring the temperature within the storage tank, the heat pump was ON/OFF controlled. The appropriate measuring position and the size of heat exchanger gives the minimized power consumption of heat pump. As the length of heat exchanger increases, the temperature measuring position goes down of the storage tank and the power consumption increases.

Numerical Simulation on Startup Transient Performance of a Centrifugal Pump

  • Chen, Gang;Shao, Jie;Wu, Yulin;Liu, Shuhong;Cao, Guangjun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.751-755
    • /
    • 2008
  • During the rapid startup transient of a centrifugal pump, in order to investigate its transient characteristics, the torque equations are deduced. Based on these equations, numerical simulation is carried out with the Large Eddy Simulation(LES) method and UDFs(User Defined Functions) are applied during the simulation. Comparison between simulation and experiment results of pump heads and rotational speed shows that they are in good agreement, indicating that the dynamic characteristics of this pump can be predicted accurate comparatively through simulation with LES method during its startup process.

  • PDF