• Title/Summary/Keyword: Thermal property

Search Result 1,762, Processing Time 0.04 seconds

Process Optimization of PECVD SiO2 Thin Film Using SiH4/O2 Gas Mixture

  • Ha, Tae-Min;Son, Seung-Nam;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.434-435
    • /
    • 2012
  • Plasma enhanced chemical vapor deposition (PECVD) silicon dioxide thin films have many applications in semiconductor manufacturing such as inter-level dielectric and gate dielectric metal oxide semiconductor field effect transistors (MOSFETs). Fundamental chemical reaction for the formation of SiO2 includes SiH4 and O2, but mixture of SiH4 and N2O is preferable because of lower hydrogen concentration in the deposited film [1]. It is also known that binding energy of N-N is higher than that of N-O, so the particle generation by molecular reaction can be reduced by reducing reactive nitrogen during the deposition process. However, nitrous oxide (N2O) gives rise to nitric oxide (NO) on reaction with oxygen atoms, which in turn reacts with ozone. NO became a greenhouse gas which is naturally occurred regulating of stratospheric ozone. In fact, it takes global warming effect about 300 times higher than carbon dioxide (CO2). Industries regard that N2O is inevitable for their device fabrication; however, it is worthwhile to develop a marginable nitrous oxide free process for university lab classes considering educational and environmental purpose. In this paper, we developed environmental friendly and material cost efficient SiO2 deposition process by substituting N2O with O2 targeting university hands-on laboratory course. Experiment was performed by two level statistical design of experiment (DOE) with three process parameters including RF power, susceptor temperature, and oxygen gas flow. Responses of interests to optimize the process were deposition rate, film uniformity, surface roughness, and electrical dielectric property. We observed some power like particle formation on wafer in some experiment, and we postulate that the thermal and electrical energy to dissociate gas molecule was relatively lower than other runs. However, we were able to find a marginable process region with less than 3% uniformity requirement in our process optimization goal. Surface roughness measured by atomic force microscopy (AFM) presented some evidence of the agglomeration of silane related particles, and the result was still satisfactory for the purpose of this research. This newly developed SiO2 deposition process is currently under verification with repeated experimental run on 4 inches wafer, and it will be adopted to Semiconductor Material and Process course offered in the Department of Electronic Engineering at Myongji University from spring semester in 2012.

  • PDF

Effect of Processing Factors on the Properties of Melt-blown PP/Ba-ferrite Composite Fabrics (Melt-blown 방사에 의한 PP/Ba-ferrite 복합 부직포 제조시의 공정인자가 부직포의 특성에 미치는 영향)

  • Han, Jong-Hun;Lee, Dong-Jin;Lim, Hyung Mi;Lee, Seung-Ho;Oh, Sung Geoun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.267-273
    • /
    • 2006
  • We have prepared PP/Ba-ferrite composite fabrics by a melt-blown spinning method and investigated the relationship between the properties of PP/Ba-ferrite composite fabrics and melt-blown processing factors. A PP composite containing Ba-ferrite as a magnetic particulate filler was prepared in the form of pellet from PP resin and Ba-ferrite powder by melt compounding using a single extruder. Screw turning force (rpm), DCD (die-to-collector distance), and Ba-ferrite content were changed. We measured diameters of fiber, mechanical, thermal, and magnetic properties for the composited PP fabrics. The elongation was increased and a fiber diameter and tensile strength were decreased as the spinning distance increased or screw turning force decreased. The crystallinity was increased with increasing spinning distance according to XRD. It was assumed that the orientation of crystalline domain in the neat PP without ferrite was increased by drawing in mechanical direction, however, the orientation in the PP composite was decreased according to XRD analysis. We measured a magnetic property of PP nonwoven fabric containing Ba-ferrite powder. A coercive force, maximum magnetization, and residual magnetization are reduced with the spinning distance. According to the result of TGA measurement, the heat resistance was increased with the Ba-ferrite powder content and with decreasing the spinning distance.

Synthesis and Photovoltaic Properties of Conjugated Polymers Having Push-pull Structure according to the Type of Side-chain in the N-Substituted Phenothiazine (Push-pull 구조의 공액 고분자 합성 및 Phenothiazine의 질소 원자에 치환된 Side-chain에 따른 유기박막태양전지로의 특성 연구)

  • Seong, Ki-Ho;Yun, Dae-Hee;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.624-631
    • /
    • 2014
  • In this study, a new series of conjugated polymer 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-(octyloxy)phenyl)-10H-phenothiazine (P1) and 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-((2-ethylhexyl)oxy)phenyl)-10H-phenothiazine (P2) were synthesised and organic photovoltaics (OPVs) properties were characterized. The push-pull structure polymer consisted of phenothiazine derivative as an electron donor and benzothiadiazole derivative as an electron acceptor. The aliphatic chain substituted aromatic ring was substituted at the position of N in phenothiazine for the electron-rich and improved solubility. Excellent thermal stabilities of P1 and P2 were confirmed by measured Td values as 321.9 and $323.7^{\circ}C$, respectively and the degrees of polymerization were 4,911 (P1) and 5,294 (P2). The maximum absorption wavelength of P1 and P2 were 549 and 566 nm, respectively. The device was fabricated and the OPVs property was measured. As a result, the power efficiency of conversion for P1 and P2 were 0.96 and 0.90%, respectively.

Synthesis of Chromium Nitride and Evaluation of its Catalytic Property (크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구)

  • Lee, Yong-Jin;Kwon, Heock-Hoi
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • We synthesized phase pure CrN having surface areas up to $47m^2/g$ starting from $CrCl_{3}$ with $NH_{3}$. Thermal Gravimetric Analysis coupled with X-ray diffraction was carried out to identify solid state transition temperatures and the phase after each transition. In addition, the BET surface areas, pore size distributions, and crystalline diameters for the synthesized materials were analyzed. Space velocity influenced a little to the surface areas of the prepared materials, while heating rate did not. We believe it is due to the fast removal of reaction by-products from the system. Temperature programmed reduction results revealed that the CrN was hardly passivated by 1% $O_{2}$. Molecular nitrogen was detected from CrN at 700 and $950^{\circ}C$, which may be from lattice nitrogen. In temperature programmed oxidation with heating rate of 10 K/min in flowing air, oxidation started at or higher than $300^{\circ}C$ and resulting $Cr_{2}O_{3}$ phase was observed with XRD at around $800^{\circ}C$. However the oxidation was not completed even at $900^{\circ}C$. CrN catalysts were highly active for n-butane dehydrogenation reaction. Their activity is even higher than that of a commercial $Pt-Sn/Al_{2}O_{3}$ dehydrogenation catalyst in terms of volumetric reaction rate. However, CrN was not active in pyridine hydrodenitrogenation.

A Study on the Properties of LDPE/LLDPE blends Prepared by Compositional Quenching Process (Compositional Quenching 공정에 의한 LDPE/LLDPE 블렌드의 물성에 관한 연구)

  • Cho, Soo-Min;Lee, Youngchul;Hwang, Seok-Ho;Lee, Sang-Won;Kim, Su-Kyung
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.504-510
    • /
    • 1996
  • Low-density polyethylene(LDPE)/Linear low-density polyethylene(LLDPE) blends were prepared by the compositional quenching process, a new morphology control method. The blends were characterized in terms of melting and crystallization behavior and mechanical properties. The results were compared with those of mechanically blended and solution blended samples. From DSC experiments, it was found that the melting temperatures and crystallization temperatures of the blends were dependent on the blending methods. In thermal property, LDPE/LLDPE blends prepared by compositional quenching process were similar to the blends prepared by solution blending but different from the blends prepared by mechanical blending. This result is explained to be due to the domain size dispersed in the matrix. The elongation-at-break and tensile strength of the samples blended by compositional quenching showed similar to those of the samples blended by solution blending method but larger than those of samples prepared by mechanical blending. Also, the Young's modulus showed the same trends as elongation-at-break. The tensile strength of the blends prepared by compositional quenching was not as high as the samples prepared by the other two blending methods.

  • PDF

A Study on the Waste Treatment from a Nuclear Fuel Powder Conversion Plant (핵연료 분말제조 공정에서 발생하는 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1164-1173
    • /
    • 1996
  • Treating methods and characteristics of waste from a nuclear fuel powder conversion plant were studied. To recovery or treat a trace uranium in liquid waste, the ammonium uranyl carbonate(AUC) filtrate must be heated for $CO_2$ expelling, essentially. Uranium content of final treated waste solution from fuel powder processes for a heavy water reactor(HWR) could be lowered to 1 ppm by the lime treatment after the ammonium di-uranate(ADU) precipitation by simple heating. Otherwise, in case of the waste from fuel powder processes for a pressurized light water reactor(PWR), it is result in 0.8 ppm as a form of uranium peroxide such as $UO_4{\cdot}2NH_4F$ compounds. Optimum condition was found at $101^{\circ}C$ by the simple heating method in case of HWR powder process waste. And in case of PWR powder process waste, optimum condition could be obtained by precipitating with adding hydrogen peroxide and adjusting at pH 9.5 with ammonia gas at $60^{\circ}C$ after heating the waste In order to expelling $CO_2$. As the characteristics of recovered uranium compounds, median particle size of ADU was increased with pH increasing in case of HWP waste. Also, in case of uranium proxide compound recovered from PWR waste, the property of $U_3O_8$ power obtained after thermal treatment in air atmosphere was similar to that of the powder prepared from AUC conversion plant.

  • PDF

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.

Copolymerization of Ethylene and Cycloolefin with Metallocene Catalyst : III. Effect of ${\alpha}$-Olefin Addition (메탈로센 촉매를 이용한 에틸렌과 시클로올레핀의 공중합 : III. ${\alpha}$-올레핀 첨가의 영향)

  • Lee, Dong-Ho;Lee, Jo-Hoon;Kim, Hyun-Joon;Kim, Woo-Sik;Min, Kyung-Eun;Park, Lee-Soon;Seo, Kwan-Ho;Kang, Inn-Kyu
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.468-475
    • /
    • 2001
  • For copolymerization of ethylene and norbornene initiated by various metallocene catalysts such as $rac-Et(Ind)_2ZrCl_2,\;rac-Me_2Si(Ind)_2ZrCl_2,\;rac-Me_2Si(Cp)_2ZrCl_2,\;and\;(n-BuCp)_2ZrCl_2$ with modified methylaluminoxane(MMAO) cocatalyst, the ${\alpha}$-olefins such as 1-hexene(H), 1-octene and 1-decene were added as a 3rd monomer. In this situation, the effects of the polymerization condition, the catalyst structure as well as the structure and the amount of added ${\alpha}$-olefin on the catalyst activity as well as the properties and structure of polymer were examined. As results, it was found that the catalyst activity and thermal property of polymer depended on not only catalyst structure but also ${\alpha}$-olefin structure. For $rac-Et(Ind)_2ZrCl_2/MMAO$ catalyst system, it was possible to get high activity and controllable $T_g$ of polymer. Among ${\alpha}$-olefins, H as a 3rd monomer exhibited the maximum enhancement in catalyst activity.

  • PDF

A Study on Flammability and Mechanical Properties of HDPE/EPDM/Boron Carbide/Triphenyl Phosphate Blends with Compatibilizer (HDPE/EPDM/Boron Carbide/Triphenyl Phosphate 블렌드의 상용화제 첨가에 따른 난연성 및 기계적 물성 연구)

  • Shin, Bum-Sik;Jung, Seung-Tae;Jeun, Joon-Pyo;Kim, Hyun-Bin;Oh, Seung-Hwan;Kang, Phil-Hyun
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.549-554
    • /
    • 2012
  • It was known that triphenyl phosphate wasn't homogeneously dispersed in HDPE/EPDM/boron carbide blends, which caused the decrease in mechanical properties. HDPE, EPDM, boron carbide, and triphenyl phosphate were blended with PE-g-MAH(polyethylene-graft-maleic anhydride) as a compatiblizer for improving the miscibility of triphenyl phosphate. Tensile strength of HDPE/EPDM/boron carbide blends decreased with increasing the contents of triphenyl phosphate for flammability. However, the mechanical properties of HDPE/EPDM/boron carbide/triphenyl phosphate blends increased by the addition of compatiblizer because triphenyl phosphate was homogeneously mixed in the blend system. The homogeneous dispersibility of triphenyl phosphate was confirmed by using scanning electron microscopy (SEM). Increased thermal stability and flammability derived from high miscibility of triphenyl phosphate were confirmed by the results of thermogravimetric analysis (TGA) and limiting oxygen index (LOI). A self-extinguishing HDPE/EPDM/boron carbide/triphenyl phosphate blend was successfully fabricated with more than 21% LOI.

Preparation of Protein-coated Cationic Liposomes Containing Doxorubicin and Their Binding Property of Blood Plasma Protein (독소루비신을 함유하고 단백질로 수식된 양이온성 리포솜의 제조 및 혈장 단백흡착 특성)

  • Kim, Sung-Kyu;Jung, Soon-Hwa;Jung, Suk-Hyun;Seong, Ha-Soo;Chi, Sang-Cheol;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • are nanometer or micrometer scale vesicles that can be used as drug delivery carriers. However, plain liposomes are plagued by rapid opsonization, making their circulation time in bloodstream be shortened. In this study, model protein, bovine serum albumin (BSA)-coated liposomes were prepared by coating cationic liposomes with BSA molecules at higher pH than isoelectric point of BSA. The BSA molecules coated on the liposomal surface were denatured by thermal treatment at above 60oC. While both plain and cationic liposomes had about mean particle diameter of 1041 nm, BSA-coated cationic liposomes (BCL) had mean particle diameter of 1091 nm. Encapsulation of model drug, doxorubicin (DOX), in liposomes were carried out by using remote loading method and the loading efficiency of DOX to liposomes was about 90%. The mean particle diameter of BCL did not increase in blood plasma and adsorption of plasma protein was much less than plain or cationic liposomes. These results suggest that BCL can be used as a long-circulating liposomes in bloodstream.