• 제목/요약/키워드: Thermal properties

검색결과 8,156건 처리시간 0.034초

Optimum LWA content in concrete based on k-value and physical-mechanical properties

  • Muda, Zakaria Che;Shafigh, Payam;Yousuf, Sumra;Mahyuddin, Norhayati Binti;Asadi, Iman
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.215-225
    • /
    • 2022
  • Thermal comfort and energy conservation are critical issues in the building sector. Energy consumption in the building sector should be reduced whilst enhancing the thermal comfort of occupants. Concrete is the most widely used construction material in buildings. Its thermal conductivity (k-value) has a direct effect on thermal comfort perception. This study aims to find the optimum value of replacing the normal aggregate with lightweight expanded clay aggregate (LECA) under high strengths and low thermal conductivity, density and water absorption. The k-value of the LECA concrete and its physical and mechanical properties have varying correlations. Results indicate that the oven-dry density, compressive strength, splitting tensile strength and k-value of concrete decrease when normal coarse aggregates are replaced with LECA. However, water absorption (initial and final) increases. Thermal conductivity and the physical and mechanical properties have a strong correlation. The statistical optimisation of the experimental data shows that the 39% replacement of normal coarse aggregate by LECA is the optimum value for maximising the compressive and splitting tensile strengths whilst maintaining the k-value, density and water absorption at a minimum.

나노층상실리케이트가 충진된 에폭시-나노콤포지트의 열적특성 연구 (Thermal Characteristics of Epoxy-Nanocomposites filled Several Types Nano Layered Silicate Particles)

  • 박재준
    • 한국전기전자재료학회논문지
    • /
    • 제21권8호
    • /
    • pp.749-754
    • /
    • 2008
  • A large number of studies on the various characteristics of epoxy-layered silicate nanocomposites, such as electric and mechanical, morphology have been conducted and contributed to improve their characteristics. However, studies on the effects of its thermal conductivities in the thermal properties are not enough, even though there are some excellent evaluations for its insulation performances. Thermal properties will cause thermal degradation and significantly affect the reliability of these epoxy-layered silicate nanocomposites. In the results of the analysis of epoxy-layered silicate nanocomposites $T_g$ for various types of organoclays (10A, 15A, 20A, 30B, and 93A), it showed an excellent thermal property of 10A. Also, it represented low values in storage modulus and mechanical Tan (Delta) at a high temperature section 140$^{\circ}C$ and excellent thermal properties due to its movement to the high temperature section in the case of the property of 10A in the measurement of DMA elastics and mechanical losses. In the results of the measurement of thermal conductivities, power ultrasonic applications represented a significant increase in thermal conductivities in the case of the applications of power ultrasonic and planetary centrifugal mixers. Based on these results, it is necessary to perform related studies because it can be applied as useful materials for future power facilities applications in mold and impregnate insulation.

저융점 복합사를 이용한 열융착 직물의 제조(I) - 헤드타이를 중심으로 - (Preparation of Thermal Bonding Fabric by using-low-melting-point Bicomponent Filament Yarn - Head tie -)

  • 지명교;이신희
    • 한국의류산업학회지
    • /
    • 제11권3호
    • /
    • pp.474-480
    • /
    • 2009
  • The purpose of this study is to prepare the hardness of polyester(PET) fabric by thermal bonding with low melting component of bicomponent fiber and to describe the change of physical properties of thermal bonded PET fabrics. The PET fabrics were prepared with regular PET fiber as warp and bicomponent fiber as weft. The bicomponent fiber of sheath-core type were composed with a regular PET core and low melting PET sheath. The thermal bonding of PET fabric was carried out in pin tenter from 120 to $195^{\circ}C$ temperature range for 60 seconds. In this study, we investigated the physical properties and melting behavior of PET fiber and the effect of the temperature of the pin tenter on the thermal bonding, mechanical properties. Melting peak of warp showed the thermal behavior of general PET fiber. However, melting peak of weft fiber(bicomponent fiber) showed the double melting peak. The thermal bonding of the PET fabric formed at about temperature of lower melting peak. The optimum thermal bonding conditions for PET fabrics was applied at $190{\sim}195^{\circ}C$ for 60seconds by pin tenter. On the other hand, the tensile strength of the PET fabric decreased with an increasing temperature of thermal bonding.

Mg-6Zn-xCu 합금의 열적 특성에 미치는 Cu 첨가의 영향 (Effect of Cu Addition on Thermal Properties of Mg-6Zn-xCu alloys)

  • 예대희;김현식;강민철;정해용
    • 한국주조공학회지
    • /
    • 제35권4호
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, Mg-Zn alloys are investigated in terms of their thermal properties after an addition of Cu. Al element is added to improve the mechanical properties and castability in general case. However, it was excluded here because it significantly decreases the thermal conductivity. On the other hand, Zn was added as a major element, which had less influence on reducing the conductivity and can complement the mechanical properties as well. Cu was also added, and it improved the heat transfer characteristics as the amount was increased. The composition ranges of Zn and Cu are 6 wt.% and 0~1.5 wt.%, respectively. Mg-6Zn-xCu alloy was prepared by a gravity casting method using a steel mold and then the thermal conductivity and the microstructure of the as-cast material were investigated. By measuring the density_(${\rho}$), specific heat_(Cp) and thermal diffusivity_(${\alpha}$), the thermal conductivity_(${\lambda}$) was calculated by the equation ${\lambda}={\rho}{\cdot}Cp{\cdot}{\alpha}$. As the amount of Cu increased in the Mg-6Zn-xCu alloy, the heat transfer characteristics were improved, resulting in a synergistic effect which is slow when the added Cu exceeds 1 wt.%. In order to investigate the relative thermal conductivity/emission of the Mg-6Zn-xCu alloy, AZ91 and AZ31 were experimentally evaluated and compared using a separate test equipment. As a result, the Mg-6Zn-1.5Cu alloy when compared to AZ91 showed improvements in the thermal conductivity ranging from 30 to 60% with a nearly 20% improvement in the thermal emission.

직물의 구성인자가 보온성에 미치는 영향 (The Effect of Structural Characteristics of Selected Wool Fabrics on Mechanical and Thermal Properties)

  • 전병익
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.5-11
    • /
    • 2006
  • This study was performed to determine the effect of structural characteristics of selected wool fabrics on mechanical and thermal properties. 52 wool fabrics, including 18 plain woven fabrics and 34 twill and satin woven fabrics were used as samples woven with various weft density for the study. Several physical characteristics such as mechanical properties, keeping warmth ratio of wool fabrics were measured. Data analyses including 1) analysis of tactile and thermal comfort sensation were performed. the following were obtained from the results: The main factors affecting keeping warmth ratio were thickness and bulk density. The keeping warmth ratio of samples increased with increasing thickness and decreasing bulk density of samples. In addition, coefficient of friction of the samples increased with keeping warmth ratio of samples. The above results show that wearing sensation and comfort properties of fabrics are changed depending on the end-use, and thus, above results can be used to manufacture of fabrics for specific end-use with high comfort properties.

  • PDF

Effect of Graphite Nanofibers on Poly(methyl methacrylate) Nanocomposites for Bipolar Plates

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.671-674
    • /
    • 2009
  • In this work, high-aspect-ratio graphite nanofibers (GNFs) were used to improve the electrical, thermal, and mechanical properties of the poly(methyl methacrylate) (PMMA) polymer, as well as those of PMMA composites suitable for use in bipolar plates. In the result, an electrical percolation threshold for the composites was formed between 1 and 2 wt% GNF content. This threshold was found to be influenced strongly by the three separate stages of the meltblending process. The composites exhibited higher thermal and mechanical properties and lower thermal shrinkage compared with the neat PMMA. Thus, GNFs were demonstrated to have positive impacts on the thermo-mechanical properties of PMMA composites and showed, thereby, reasonable potential for use in composites employed in the fabrication of bipolar plates.

나노실리카 충진함량 변화에 따른 EMNC의 특성연구 (1) -열적특성 중심으로- (Properties of EMNC according to Addition Contents Variation for Nanosilica (1) -For Thermal Properties)

  • 최운식;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.798-804
    • /
    • 2012
  • This paper focuses on thermal properties of a newly prepared composite material by nano-silica and micro-silica mixture. Nano-silica and micro-silica mixture composites were made by dispersing surface treated nano-silica(average radius: 10 nm) and micro-size silica in epoxy resin. To investigate the effects of nano-silica and micro-size silica mixture(ENMC), the glass transition temperature (Tg), coefficients of thermal expansion(CTE) and elastic modulus of DMA properties by DSC, TMA and DMA devices were measured for the ENMC according to increase nano-silica addition contents and EMC. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of surface treated nano-silica to the EMC system.

알루미나 시멘트에 기반한 복합재료의 열역학적 특성 (Thermal and Mechanical Properties of Alumina Cementitious Composite Materials)

  • 양인환;이정환;최영철
    • 한국건설순환자원학회논문집
    • /
    • 제3권3호
    • /
    • pp.199-205
    • /
    • 2015
  • 이 연구에서는 고온의 축열재료로 사용하기 위한 알루미나 시멘트 복합재료의 역학적 및 열적 특성을 파악하고자 하였다. 알루미나 시멘트를 기본 바인더로 하고 플라이애시, 실리카퓸, CSA (calcium sulfo-aluminate) 및 그라파이트의 치환에 따른 고온에서의 물성을 파악하였다. 알루미나 시멘트 기반 복합재료의 역학적 특성으로서 열사이클 전과 후의 압축강도 및 인장강도를 측정하였다. 또한, 복합재료의 열적 특성으로서 열전도율과 비열을 측정하였다. 열사이클링 적용 이후의 잔류압축강도 측정결과, 알루미나 시멘트만을 사용한 배합과 알루미나 시멘트를 실리카퓸으로 치환한 배합의 압축강도가 크게 나타나며, 이 두 배합의 잔류강도 비는 65%를 상회한다. 그라파이트를 혼합한 복합재료의 비열이 가장 크고 이는 그라파이트의 비열이 크기 때문이다. 연구결과는 콘크리트를 고온조건에서의 축열매체로 활용하기 위한 실제적인 기초실험 자료로 활용될 수 있을 것으로 사료된다.

A Study of Thermal Properties of LDPE-Nanoclay Composite Films

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • 한국포장학회지
    • /
    • 제21권3호
    • /
    • pp.107-113
    • /
    • 2015
  • This work focused on the study of thermal properties and kinetic behavior of LDPE-nanoclay composite films. The effect of nanoclay content (0.5, 1, 3, and 5 wt%) on thermal stability and crystallization characteristics of the nanocomposites were investigated by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results from endothermic curve showed that the nanoclay played an important role in the crystallization of nanocomposites by acting as nucleating agent. From exothermic curve, there was a crystallization temperature shift which was attributed to crystallization process induced by nanoclay. The TGA results showed that the addition of nanoclay significantly increased the thermal stability of LDPE matrix, which was likely due to the characteristic of layered silicates/clays dispersed in LDPE matrix as well as the formation of multilayered carbonaceous-silicate char. A well-known Coats-Redfern method was used to evaluate the decomposition activation energy of nanocomposite. It was demonstrated that introducing of nanoclay to LDPE matrix escalated the activation energy of nanocomposite decomposition resulting in thermal stability improvement.

짧은 세선에 의한 액체의 열전도율과 열확산율의 동시측정법 (Simultaneous Measurments of Thermal Conductivity and Diffusivity of Liquids with a Transient Short-Hot-Method)

  • 정태용;박수천
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.219-224
    • /
    • 1997
  • A transient short-hot-wire technique has been presented for simultaneous measurements of the thermal conductivity and diffusivity of fluids under the microgravity condition. Two-dimensional heat conduction equations for concentric cylinders with various radius ration and length-diameter ratio have been solved numerically by taking account of the heat capacity of the inner cylinder. A unique relation between the non-dimensional temperature of inner cylinder and Fourier number is obtained for a wide range of thermal properties of the fluids, because the relation if found to be almost independent of these properties. Then the characteristic could be utilized as a masterplot to evaluate both the thermal conductivity and diffusivity. In principle, this method is proved to have an error within 1% for both of these properties.

  • PDF