• Title/Summary/Keyword: Thermal profile

Search Result 472, Processing Time 0.024 seconds

Effect of Thermal Compression Treatment on the Surface Hardness, Vertical Density Propile and Thickness Swelling of Eucalyptus Wood Boards by Hot-pressing

  • Unsal, Oner;Candan, Zeki;Buyuksari, Umit;Korkut, Suleyman;Chang, Yoon-Seong;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.148-155
    • /
    • 2011
  • Thermal treatment techniques are used for modifying wood and wood-based materials to improve dimensional stability and hygroscopicity. This study investigated the effects of press pressure and temperature on density, vertical density profile, thickness swelling and surface hardness of eucalyptus wood boards. The experimental wood boards were prepared from Turkish River Gum ($Eucalyptus$ $camaldulensis$ Dehn.). The surface hardness value increased with increasing press pressure in the treated groups. The application of a higher pressure at the same temperature level increased the amount of swelling of wood. It means that it is not needed for application of higher pressure to enhance the dimensional stability of wood. It is expected that it is possible to produce increased hardness, dimensional stability and durability by application of hot pressing treatment. This research showed that different press pressure and temperature values should be used to improve the performance properties of eucalyptus wood so that the end-use of the wood materials could be expanded.

A Study on the Analysis of Error Sources and Error Compensation in Machine Tools (공작기계 오차 요인의 분석 및 보정에 관한 연구)

  • Kim, Ki-Hwan;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.185-192
    • /
    • 2017
  • Machine tool errors can be divided into geometric error, thermal deformation error, and machining error. In this study, the influence of each error on the total error and the relative size of each error are quantitatively analyzed in 2D machining. The thermal deformation error and the machining error caused a relatively large error compared to the geometric error, which is directly related to the machining accuracy. In order to eliminate the error factors, the possibility of error compensation was examined by analyzing the measured error profile shape. As a result, about 40 ~ 50% error compensation was achieved for each error factor. Through this study, it is possible to construct a basic data base on machining, and it is expected that it will be able to compensate the machining error from the viewpoint of users.

Estimation of Aging Properties for Plastic Bonded Explosives Using AKTS Thermokinetic Software (AKTS Software를 이용한 주조형 복합화약의 노화 특성 예측)

  • Kwon, Kuktae;Lee, Sojung;Kim, Seunghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • The evaluation of the shelf-life of energetic materials is important. However, there are several difficulties associated with the evaluation. First, aging experiments require a considerable amount of time. Second, treating highly energetic materials is dangerous. For these reasons, many evaluation methods have been developed. Because most energetic materials decompose with the evolution of heat, it is important to analyze the thermal properties of energetic materials in order to understand decomposition and aging properties. In this paper, we describe the estimation of thermal aging properties and develop a kinetic model from spot data set of mechanical properties and estimate aging properties for mechanical results.

Preparation and Evaluation of Temperature Sensitive Liposomes Containing Adriamycin and Cytarabine

  • Kim, Chong-Kook;Lee, Suk-Kyeong;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.129-133
    • /
    • 1993
  • Temperature sensitive liposomes(TSL) containing adriamycin (ADM) and cytarabine (Ara-C) were prepared. ADM and Ara-C were selected as model compounds of amphiphilic and hydrophilic drug, respectively. Encapsulation efficiency of ADM entrapped into TSL was about twice greater than that of Ara-C. It might be due to different polarity of the drug, Lipid compositions of TSL had no effect on the encapsulation efficiency of drugs. Thermal behavior of TSL using a differential scanning calorimetry (DSC) was also investigated. Phase transition of TSL using a differential scanning calorimetry (DSC) was also investigated. Phase transition temperature $(T_c)$ of TSL was dependent on the lipid compositions of TSL ADM broadened thermogram of TSL but Ara-C did not. However, $T_c$ of TSL was not changed by any drug. Release rate of drugs was highly dependent on temperature. The release profile of ADM was similar to that of Ara-C. The maximum release rate of drugs from TSL was occurred at the near $T_c$ and observed at $39-41^\circ{C}$ for DPPC (Dipalmitoylphosphatidylcholine) only, $52-54^\circ{C}$ for DPPC and DSPC (1:1), respectively. Effect of human serum alburmin (HAA) on the release rate of ADM was investigated. HSA had no significant effect on the release of ADM below $T_c$. However, ADM release from TSL was increased at the near and above $T_c$. The HSA-induced leakage of drug may result from the interaction of liposomal constituents with HSA structure at the near TEX>$4^\circ{C}$. From the fact that the release profiles of ADM from freshly prepared TSL and stored TSL for 1 week at TEX>$4^\circ{C}$ was not changed, the TSL was considered to be stable for at least 1 week at TEX>$4^\circ{C}$. Based on these findings, TSL may be useful to deliver drugs to preheated target sites due to its thermal behaviors.

  • PDF

Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT

  • Attia, Amina;Berrabah, Amina Tahar;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.899-910
    • /
    • 2021
  • A 4-unknown shear deformation theory is applied to investigate the vibration of functionally graded plates under thermal environment. The plate is fabricated from a functionally graded material mixed of ceramic and metal with continuously varying material properties through the plate thickness. Three types of thermal loadings, uniform, linear and nonlinear temperature rises along the plate thickness are taken into account. The present theory contains four unknown functions as against five or more in other higher order shear deformation theories. The through-the-thickness distributions of transverse shear stresses of the plate are considered to vary parabolically and vanish at upper and lower surfaces. The present model does not require any problem dependent shear correction factor. Analytical solutions for the free vibration analysis are derived based on Fourier series that satisfy the boundary conditions (Navier's method). Benchmark solutions are firstly considered to evaluate the accuracy of the proposed model. Comparisons with the solutions available in literature revealed the good capabilities of the present model for the simulations of vibration responses of FG plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.

Experimental Study on Optimization of Absorber Configuration in Compression/Absorption Heat Pump with NH3/H2O Mixture (NH3/H2O 혼합냉매를 사용한 압축/흡수식 히트펌프 시스템의 흡수기 최적화에 관한 실험적 연구)

  • Kim, Ji-Young;Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • This research aims todevelopa compression/absorption hybrid heat pump system using an $NH_3/H_2O$ as working fluid.The heatpump cycle is based on a combination of compression and absorption cycles. The cycle consists of two-stage compressors, absorbers, a desorber, a desuperheater, solution heat exchangers, a solution pump, a rectifier, and a liquid/vapor separator. The compression/absorption hybrid heat pump was designed to produce hot water above $90^{\circ}C$ using high-temperature glide during a two-phase heat transfer. Distinct characteristics of the nonlinear temperature profile should be considered to maximize the performance of the absorber. In this study, the performance of the absorber was investigated depending on the capacity, shape, and arrangementof the plate heat exchangers with regard tothe concentration and distribution at the inlet of the absorber.

Effect of Process Parameters on the Residual Stress Distribution in p+ Films (공정변수가 p+ 박막의 잔류응력 분포에 미치는 영향)

  • Yang, E.H.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1437-1439
    • /
    • 1995
  • This paper investigates the effect of thermal oxidation on the profile of the residual stress along the depth of p+ silicon films by quantitative determination method. Two examples for the application of this method illustrate that most of p+ region is subjected to the tensile stress except the region near the front surface and that the stress gradient of the film oxidized at $1100^{\circ}C$ is more steep than that of the film oxidized at $1000^{\circ}C$.

  • PDF

A Study on Thermal Performance of Heat Pipe for Optimum Placement of Satellite Equipment

  • Park, Jong-Heung
    • ETRI Journal
    • /
    • v.19 no.2
    • /
    • pp.59-70
    • /
    • 1997
  • A study on the operation of a heat pipe with two heat sources has been performed to optimize the heat distribution of satellite equipment. A numerical modeling is used to predict the temperature profile for the heat pipe assuming cylindrical two-dimensional laminar flow for the vapor, and the conduction heat transfer for the wall and wick. An experimental study using the copper-water heat pipe with the length of 0.45 m has been performed to evaluate the numerical model and to compare the temperature distribution at the outer wall for the non-uniform heat distribution. The results on temperature profiles for the heat input range from 29 W to 47 W on each heater are presented. Also the correlation between the heat input and the temperature increase is presented for the optimum distribution on two heaters. The result shows that the outer wall temperature can be controlled by redistribution of heat sources. It is also concluded that the heat source closer to the condenser can carry more heat while maintaining lower temperatures at the outer wall.

  • PDF

Performance of Hybrid Laser Diodes Consisting of Silicon Slab and InP/InGaAsP Deep-Ridge Waveguides

  • Leem, Young-Ahn;Kim, Ki-Soo;Song, Jung-Ho;Kwon, O-Kyun;Kim, Gyung-Ock
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.339-341
    • /
    • 2010
  • The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single-mode silicon waveguide, which is necessary for a wavelength-division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of $3.7{\mu}m$. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 ${\mu}m$), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.

A study on TCR characteristic of $TaN/Al_{2}O_{3}$ thin film resistors ($TaN/Al_{2}O_{3}$ 박막 저항소자 개발에 관한 연구)

  • Kim, I.S.;Cho, Y.R.;Min, B.K.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.82-85
    • /
    • 2002
  • In recent years, the tantalum nitride(TaN) thin-film has been developed for the electronic resistor and capacitor. In this papers, this study presents the surface profile and sheet-resistance property relationship of reactive-sputtered TaN thin film resistor processed by buffer of Ti and Cr on alumina substrate. The TCR properties of the TaN films were discussed in terms of reactive gas ratio, ratio of nitrogen, crystallization and thin films surface morphology due to annealing temperature. It is clear that the TaN thin-films resistor electrical properties are low TCR related with it's buffer layer condition. Ti buffer layer thin film resistor having a good thermal stability and lower TCR properties then Cr buffer expected for the application to the dielectric material of passive component.

  • PDF