• Title/Summary/Keyword: Thermal pre-treatment

Search Result 123, Processing Time 0.028 seconds

Effect of Microstructure on the Strain Aging Properties of API X70 Pipeline Steels (API X70 라인파이프 강재의 변형 시효 특성에 미치는 미세조직의 영향)

  • Lee, Seung-Wan;Im, In-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.702-708
    • /
    • 2018
  • This study deals with the effect of microstructure factors on the strain aging properties of API X70 pipeline steels with different microstructure fractions and grain sizes. The grain size and microstructure fraction of the API pipeline steels are analyzed by optical and scanning electron microscopy and electron backscatter diffraction analysis. Tensile tests before and after 1 % pre-strain and thermal aging treatment are conducted to simulate pipe forming and coating processes. All the steels are composed mostly of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite. After 1 % pre-strain and thermal aging treatment, the tensile test results reveal that yield strength, tensile strength and yield ratio increase, while uniform elongation decreases with an increasing thermal aging temperature. The increment of yield and tensile strengths are affected by the fraction of bainitic ferrite with high dislocation density because the mobility of dislocations is inhibited by interaction between interstitial atoms and dislocations in bainitic ferrite. On the other hand, the variation of yield ratio and uniform elongation is the smallest in the steel with the largest grain size because of the decrease in the grain boundary area for dislocation pile-ups and the presence of many dislocations inside large grains after 1 % pre-strain.

Solid Reduction and Methane Production of Food Waste Leachate using Thermal Solubilization (열가용화를 이용한 음식물탈리여액의 고형물 감량화 및 메탄 생산에 관한 연구)

  • Choi, Jung Su;Kim, Hyun Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.559-567
    • /
    • 2014
  • Since the ocean dumping of organic wastes is prohibited under the London Convention, the need for land treatment of food waste leachate (FWL) has significantly been growing in recent years. This study was conducted to use thermal solubilization to turn FWL into a form that can easily be degraded during the anaerobic digestion process, thereby reducing the percentage of solids and increasing the production of methane. To derive the optimal operating conditions of thermal solubilization, a laboratory-scale reactor was built and operated. The optimal reaction temperature and time turned out to be $190^{\circ}C$ and 90 min, respectively. The BMP test showed a methane production of 465 mL $CH_4/g$ $COD_{Cr}$ and a biodegradation rate of 90.1%. The production of methane rose by about 15%, compared with no the application of thermal solubilization. To reduce the solid content of FWL and improve the methane production, therefore, it may be helpful to apply thermal solubilization to pre-treatment facilities for anaerobic digestion.

Application of membrane distillation process for tap water purification

  • Gryta, Marek
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Membrane distillation process was used for purification of pre-treated natural water (tap water). The rejection of inorganic and organic compounds in this process was investigated. The obtained rejection of inorganic solutes was closed to 100%, but the volatile organic compounds (VOCs) diffused through the membrane together with water vapour. The content of trihalomethanes (THMs) in the obtained distillate was two-three fold higher than that in the feed, therefore, the rejection of the total organic compounds present in the tap water was reduced to a level of 98%. The intensive membranes scaling was observed during the water separation. The morphology and composition of the fouling layer was studied using scanning electron microscopy coupled with energy dispersion spectrometry. The influence of thermal water pre-treatment performed in a heat exchanger followed by filtration on the MD process effectiveness was evaluated. This procedure caused that significantly smaller amounts of $CaCO_3$ crystallites were deposited on the membrane surface, and a high permeate flux was maintained over a period of 160 h.

Effect of non-thermal plasma on the shear bond strength of resin cements to Polyetherketoneketone (PEKK)

  • Labriaga, Wilmart;Song, So-Yeon;Park, Jin-Hong;Ryu, Jae-Jun;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.408-414
    • /
    • 2018
  • PURPOSE. This study aimed to assess the effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK) in comparison to other surface treatment methods. MATERIALS AND METHODS. Eighty PEKK discs were subjected to different surface treatments: (1) Untreated (UT); (2) Non-thermal plasma (NTP); (3) Sandblasting with $50{\mu}m$ $Al_2O_3$ particles (SB); and (4) Sandblasting + Non-thermal plasma (SB+NTP). After each surface treatment, the contact angle was measured. Surface conditioning with Visio.Link was applied in all groups after pre-treatment. RelyX Unicem resin cement was bonded onto the PEKK specimens. After fabrication of the specimens, half of each group (n=10) was initially tested, while the other half was subjected to thermocycling ($5^{\circ}C$ to $55^{\circ}C$ at 10,000 cycles). Shear bond strength (SBS) testing was performed using a universal testing machine, and failure modes were assessed using stereomicroscopy. The SBS results were analyzed statistically using one-way ANOVA followed by Tukey's post hoc test. Independent t-test was used to examine the effect of thermocycling (P<.05). RESULTS. The highest SBS values with or without thermocycling were observed with PEKK specimens that were treated with SB+NTP followed by the SB group. The lowest SBS results were observed in the UT groups. CONCLUSION. The shear bond strength between PEKK and resin cements was improved using non-thermal plasma treatment in combination with sandblasting.

Effects of Li2O Addition and Heat-Treatment on Formability of FeS2 Powder for Cathode of Thermal Battery (열전지 양극용 FeS2 분말의 성형성에 미치는 Li2O 첨가 및 열처리의 효과)

  • Ryu, Sung-Soo;Lee, Won-Jin;Kim, Seongwon;Cheong, Hae-Won;Cho, Sung-Baek;Kang, Seung-Ho;Lee, Sung-Min
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.185-190
    • /
    • 2014
  • $FeS_2$ has been widely used for cathode materials in thermal battery because of its high stability and current capability at high operation temperature. Salts such as a LiCl-KCl were added as a binder for improving electrical performance and formability of $FeS_2$ cathode powder. In this study, the effects of the addition of $Li_2O$ in LiCl-KCl binder on the formability of $FeS_2$ powder compact were investigated. With the increasing amount of $Li_2O$ addition to LiCl-KCl binder salts, the strength of the pressed compacts increased considerably when the powder mixture were pre-heat-treated above $350^{\circ}C$. The heat-treatment resulted in promoting the coating coverage of $FeS_2$ particles by the salts as $Li_2O$ was added. The observed coating as $Li_2O$ addition might be attributed to the enhanced wettability of the salt rather than its reduced melting temperature. The high strength of compacts by the $Li_2O$ addition and pre-heat-treatment could improve the formability of $FeS_2$ raw materials.

Effect of Phosphorous-Based Flame Retardants on the Weight, Diameter, and Thermal Stability after Stabilization Processes of Rayon Fibers for Carbon Fibers (탄소섬유용 레이온섬유의 안정화공정 후 중량, 직경 및 열안정성에 미치는 인계 난연제의 영향)

  • Yoon Sung Bong;Cho Donghwan;Park Jong Kyoo
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.211-215
    • /
    • 2005
  • Stabilization process is absolutely necessary to convert the precursor fibers into chemically, physically, thermally and structurally stable carbon fibers. Especially, it is critically important for rayon fibers experiencing severe weight loss and thermal shrinkage occurring at the stabilization stage below $400^{\circ}C$. The stabilization of rayon fibers strongly depends not only on stabilization temperature but also on heating rate, chemical pre-treatment, atmosphere, and so on. In the present study, the weight loss, fiber diameter change occurred in the furnace during the stabilization process for rayon fibers produced with various heating rates and in the absence and presence of phosphorous-based flame retardants and the thermal stability of the stabilized fibers were investigated. The result indicates that the weight, diameter and thermal stability of the rayon fibers are significantly affected by the type and amount of the flame retardant used. It is also suggested that the pre-treatment of rayon fibers with a concentration lower than $3\;vol\%$ of phosphoric acid is most desirable for further carbonization process of stabilized rayon fibers.

Effects of Substrate to Inoculum Ratio on Biochemical Methane Potential in Thermal Hydrolysate of Poultry Slaughterhouse Sludge (기질과 접종액의 비율이 도계 가공장 슬러지 열가수분해액의 메탄생산퍼텐셜에 미치는 영향)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2016
  • BACKGROUND: Anaerobic digestion is the most feasible technology because not only the energy embedded in organic matters can be recovered, but also they are stabilized while being degraded. This study carried out to improve methane yield of slaughterhouse wastewater treatment sludge cake by the thermal pre-treatment prior to anaerobic digestion.METHODS AND RESULTS: Slaughterhouse wastewater treatment sludge cake was pre-treated by the closed hydrothermal reactor at reaction temperature of 190℃. BMPs (Biochemical methane potential) of the thermal hydrolysate was tested in the different S(Substrate)/I(Inoculum) ratio conditions. COD(Chemical oxygen demand) and SCOD(Soluble chemical oxygen demand) contents of thermal hydrolysate were 10.99% and 10.55%, respectively, then, the 96.00% of COD was remained as a soluble form. The theoretical methane potential of thermal hydrolysate was 0.51 Nm3 kg-1-VSadded. And BMPs were decreased from 0.56 to 0.22 Nm3 kg-1-VSadded when S/I ratio were increased from 0.1 to 2.0 in the VS content basis. Those were decreased from 0.32 to 0.13 Nm3 kg-1-CODadded when S/I ratio were increased from 0.1 to 2.0 based on COD content. The anaerobic degradability of VS basis have showed 196.9%, 102.2%, 80.7%, 67.4%, and 39.4% in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively. Also the COD of 119.6%, 76.3%, 70.1%, 69.0%, and 43.1% were degraded anaerobically in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively.CONCLUSION: BMPs obtained in the S/I ratios of 0.1 and 0.3 was overestimated by the residual organic matters remaining at the inoculum. And inhibitory effect was observed in the highest S/I ratio of 2.0. The optimum S/I ratios giving reasonable BMPs might be in the range of 0.5 and 1.0 in S/I ratio. Therefore VS biodegradability of thermal hydrolysate was in 67.4-80.7% and COD biodegradability showed 69.0-70.1%.

Study on AlAs-doped ZnO Thin Film Properties (AlAs로 도핑된 ZnO 박막 특성에 대한 연구)

  • Nam, Hyoung-Gin;Cha, Kyung-Hwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1057-1061
    • /
    • 2007
  • In this study, we investigated the properties of ZnO thin films prepared by layer-by-layer method in RF magnetron sputtering system using AlAs and ZnO targets. Effects of $H_2O_2$ dip prior to thermal treatment were studied as well. Either n-type or p-type films were observed in our study depending on the annealing conditions. It thus indicates the feasibility of arbitrarily modifying the conductivity type. At the same time, it also implies the thermal instabilities of the film properties. Property measurements after stressing the films up to 144 hours showed that thermal variations of properties nay be suppressed by pre-treatment in 30% $H_2O_2$ for 1 min.

  • PDF

Pre-treatment Technology of Wastewater Sludge for Enhanced Biogas Production in Anaerobic Digestion (혐기소화에서의 바이오가스 생산 증진을 위한 슬러지 전처리 기술)

  • Kim, Dong-Jin
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.355-369
    • /
    • 2013
  • Economic feasibility is one of the most important factors in energy production from regenerative biomass. From the aspect, biogas from anaerobic digestion of wastewater sludge is regarded as the most economical because of its cheap substrate and additional income from the disposal of waste sludge. Sludge hydrolysis has been regarded as the rate limiting step of anaerobic digestion and many sludge pre-treatment technologies have been developed to accelerate anaerobic sludge digestion for enhanced biogas production. Various sludge pre-treatment technologies including biological, thermo hydrolysis, ultrasonic, and mechanical methods have been applied to full-scale systems. Sludge pre-treatment increased the efficiency of anaerobic digestion by enhancing hydrolysis, reducing residual soilds, and increasing biogas production. This paper introduces the characteristics of various sludge pre-treatment technologies and the energy balance and economic feasibility of each technology were compared to prepare a guideline for the selection of feasible pre-treatment technology. It was estimated that thermophilic digestion and thermal hydrolysis were most economical technology followed by Cell rupture$^{TM}$, OpenCEL$^{TM}$, MicroSludge$^{TM}$, and ultrasound. The cost for waste sludge disposal shares the biggest portion in the economic analysis, therefore, water content of the waste sludge was the most important factor to be controlled.

Effects of Hydro-thermal Reaction Temperature on Anaerobic Biodegradability of Piggery Manure Hydrolysate

  • Kim, Ho;Jeon, Yong-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.602-609
    • /
    • 2015
  • In order to enhance a biogas production by the hydro-thermal pre-treatment of piggery manure, the effects of hydro-thermal reaction temperature at thermal hydrolysis of piggery manure on the methane potential and anaerobic biodegradability of thermal hydrolysate were analyzed. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ caused the enhancement of hydrolysis efficiency, and most of organic matters were present in soluble forms. However, the methane potentials ($B_u-TCOD$) of hydrolysate were decreased from 0.239 to $0.188Nm^3kg^{-1}-TCOD_{added}$ by increasing hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$, and also the anaerobic biodegradability (DTCOD) decreased from 74.6% to 58.6% with increase of hydro-thermal reaction temperature. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ resulted in the decrease of easily biodegradable organic matter content, while persistent organic matter contents increased.