• Title/Summary/Keyword: Thermal power plants

Search Result 522, Processing Time 0.027 seconds

Automatic Photovoltaic Panel Area Extraction from UAV Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.559-568
    • /
    • 2016
  • For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, the technologies developed until now have had the shortcomings of having to analyze the images manually to detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with the proposed algorithm.

Modeling of Boiler Steam System in a Thermal Power Plant Based on Generalized Regression Neural Network (GRNN 알고리즘을 이용한 화력발전소 보일러 증기계통의 모델링에 관한 연구)

  • Lee, Soon-Young;Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.349-354
    • /
    • 2022
  • In thermal power plants, boiler models have been used widely in evaluating logic configurations, performing system tuning and applying control theory, etc. Furthermore, proper plant models are needed to design the accurate controllers. Sometimes, mathematical models can not exactly describe a power plant due to time varying, nonlinearity, uncertainties and complexity of the thermal power plants. In this case, a neural network can be a useful method to estimate such systems. In this paper, the models of boiler steam system in a thermal power plant are developed by using a generalized regression neural network(GRNN). The models of the superheater, reheater, attemperator and drum are designed by using GRNN and the models are trained and validate with the real data obtained in 540[MW] power plant. The validation results showed that proposed models agree with actual outputs of the drum boiler well.

Assessment on Plant-Specific PSA for Power Uprates of Westing-House Type Nuclear Power Plants in Korea (국내 WH형원전의 출력증강에 따른 PSA 영향평가)

  • Lee, Keun-Sung;Lim, Hyuk-Soon;Lee, Eun-Chan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3464-3466
    • /
    • 2007
  • Power uprate is the process of increasing the maximum power level at which a commercial nuclear power plant may operate. Power uprate applications(113 units) for NPPs(Nuclear Power Plants) were recently approved in the United States. Utilities have been using power uprates since the 1970s as a way of increasing the power output of their nuclear plants. To increase the power output of a reactor, typically more highly enriched uranium fuel and/or more fresh fuel is used. This enables the reactor to produce more thermal energy and therefore more steam, driving a turbine generator to produce electricity. In this paper, the propriety of power uprate is explained through the review on the power uprate method and the changes of the physical parameters due to power uprate. The analysis results showed that the CDF(Core Damage Frequency) and LERF(Large Early Release Frequency) are affected in the current probabilistic safety assessment (PSA) model.

  • PDF

A Numerical Analysis on Thermal Stratification Phenomenon by In-Leakage in a Branch Piping

  • Park Jong-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2245-2252
    • /
    • 2005
  • Thermal stratification in the branch piping of power plants can be generated by turbulent penetration or by valve leakage. In this study, a numerical analysis was performed to estimate the thermal stratification phenomenon by in-leakage in the SIS branch piping of nuclear power plant. Leakage rate, leakage area and leakage location were selected as evaluation factors to investigate the thermal stratification effect. As a result of the thermal stratification effect according to leakage rate, the maximum temperature difference between top and bottom of the horizontal piping was evaluated to be about 185K when the valve leakage rate was about 10 times as much as the allowed leakage rate. For leakage rate more than 10 times the allowed leakage rate, the temperature difference was rapidly decreased due to the increased mixing effect. In the result according to leakage area, the magnitude of temperature difference was shown in order of $3\%,\;1\%\;and\;5\%$ leakage area of the total disk area. In the thermal stratification effect, according to the leakage location, temperature difference when leakage occurred in the lower disk was considerably higher than that of when leakage occurred in the upper disk.

Equipment Qualification of a Safety-related Large Induction Motor for Nuclear Power Plants (원자력발전소 안전등급 대형유도전동기의 기기검증)

  • Ko, W.S.;Kim, J.;Hur, I.G.;Choi, B.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.498-503
    • /
    • 2000
  • A safety-related equipment for use in Nuclear Power Plant should be needed an Equipment Qualification. This paper presents the approach, methods, philosophies, and procedures for qualifying the large squirrel-cage induction electric pump motors for use in ULCHIN 5&6 Nuclear Power Plants. In this paper, the method of qualification is a combination of type test and analysis method, which is composed of Radiation exposure test, Seismic simulation test, Thermal aging analysis for non-metallic materials and Seismic analysis. It is found that the motor performs its safety function with no failure mechanism under postulated service conditions.

  • PDF

Equipment Qualification of a Safety-related Large Induction Motor for Nuclear Power Plants (원자력발전소 안전등급 대형유도전동기의 기기검증)

  • Lee, Hyoung-Woo;Ko, Woo-Sik;Ryu, Jeong-Hyeon;Park, No-Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.72-77
    • /
    • 2007
  • A safety-related equipment for the nuclear power plant should be needed an equipment qualification. In this paper, the approach, methods, philosophies, and procedures for qualifying the large squirrel-cage induction electric pump motors for use in ULCHIN 5, 6 Nuclear Power Plants were presented. The method of qualification is a combination of experimental test and analytic method, which is composed of radiation exposure test, seismic simulation test, thermal aging analysis for non-metallic materials, and seismic analysis. The results showed that the motor performed its safety function with no failure mechanism under postulated service conditions.

Calculation of CO2 Emission for Fossil-Fired Thermal Power Plant considering Coal-Oil Mix Rate (혼소율을 고려한 화력 발전소의 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Kim, Soon-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.67-72
    • /
    • 2010
  • G8 summit meeting held in July 2008 decided to set up a long-term goal, by 2050, reducing the world greenhouse emissions by half of those emitted in 1990. In November 2009, the Government announced to reduce the national $CO_2$ emission by 30[%] of BAU by 2020. Electric power industries in Korea produce most of their electricity by burning fossil fuels, and emit approximately 28[%] of national $CO_2$ emissions. Monitoring the $CO_2$ emissions. Monitoring the $CO_2$ emission of electric power plants is very important. This paper presents a method to calculate the hourly $CO_2$ emission for a thermal power plant burning mixture of coal and oil using the performance test data and coal-oil mix rate. An example of $CO_2$ emission calculation is also demonstrated.

A Case Study on Human Errors in Thermal Power Plant (화력발전소에서의 인적오류 사례 및 개선방안)

  • Park, Young-Kyu;Chun, Sang-Ki;Kim, Bong-Bin;Kim, Yoon-Kyong;Jung, Chang-Woo
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.247-253
    • /
    • 2008
  • There are various types of unexpected troubles in service of a thermal power plant, which consists of many complicated high-tech mass equipments. The troubles are mostly caused by the manufacturing defects, the material deteriorations, the human errors, and others. Failures of its system due to the troubles, can bring on the extravagant economic loss and the qualitative degradation of electricity. Especially, it is most important to find a way to decrease human errors because it can result in not only the economic loss, but also morale declination of employees or the department related to the trouble. Therefore, we categorize previous troubles related to the human errors, and try to show the causations and the counter-measures based on the various categories such as maintenance, an operation, and system of the thermal power plants.

Characteristics of SCR-Catalytic with de-NOx System in Thermal Power plants (화력발전소 NOx 제거를 위한 SCR 촉매 특성)

  • Ko, Seung-Jae;Kim, Ji-Hyun;Kim, Mi-Joung;Cho, Yeon-Bae;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.451-460
    • /
    • 2013
  • NOx from the thermal power plants are NO and $NO_2$. This work investigated the chemical/physical characteristics and SCR efficiency of newly prepared catalysts including tungsten ($WO_3$), molybdenum ($MoO_3$) and antimony ($SbO_3$) based on vanadia($V_2O_5$) over titania($TiO_2$). As a result of the examination, the surface area of the catalysts promoted with additional metals was larger and the de-NOx efficiency also was enhanced with temperature. The most efficient catalytst was $V_2O_5/TiO_2-WO_3$(10%) at $200^{\circ}C$. Such a high efficiency could contribute to reduce the ammonia slip.

Collection Efficiency of a Mist Eliminator for Wet Flue Gas Desulfurization (습식 배연탈황설비용 습분제거기 포집효율 평가)

  • Kim, Moon-Won;Yook, Se-Jin;Yu, Tae U
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.73-80
    • /
    • 2018
  • Recently, there has been much research on the effect of ultrafine dust on human body with increasing interest in the ultrafine dust. In the Republic of Korea, there are many old thermal power plants, and the amount of ultrafine dust emitted from the thermal power plants is reported to be about 14% of the total amount of domestic fine dust. Therefore, the amount of fine dust from the flue gas desulfurization facility in the thermal power plant needs be reduced. In this study, we made an experimental setup to simulate a flue gas desulfurization facility and analyzed the physical characteristics of the particles passing through a mist eliminator. Experiments were carried out to investigate the collection efficiency of the mist eliminator by using the Arizona Test Dust in a dry environment, and then spraying limestone slurry into the flue gas desulfurization system equipped with the mist eliminator to examine the size and morphology of limestone particles upstream and downstream of the mist eliminator. Cut-off size of the mist eliminator was formed at about $6{\mu}m$. The result of this study is expected to be helpful for designing an electrostatic precipitator for removing particles passing through the mist eliminator.