• Title/Summary/Keyword: Thermal plasma spray coating

Search Result 111, Processing Time 0.04 seconds

Development of Ni/Cr Plating Process for LRE Thrust Chamber (액체로켓엔진 연소기용 니켈/크롬 코팅의 공정 개발)

  • Cho, Hwang-Rae;Bang, Jeong-Suk;Rhee, Byung-Ho;Lee, Kwang-Jin;Lim, Byoung-Jik;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.603-607
    • /
    • 2009
  • A Ni/Cr plating process has been developed for applying to inner wall of liquid rocket engine(LRE) thrust chamber. Ni plating conditions were selected through thermal shock test and endurance verification of the plating layers was performed through hot firing test of a subscale thrust chamber with Ni/Cr plating. Test results showed that a crack or separation of the plating layers was not found. Judging from the results, Ni/Cr plating could be applied to LRE thrust chamber as a substitute of air plasma sprayed ceramic coating which is presently being used.

  • PDF

Improvement of Adhesion Strength of High Temperature Plasma Coated Aluminum Substrate with Aluminum-Alumina Powder Mixture (알루미늄 기지에 알루미늄-알루미나 혼합분말을 이용한 고온플라즈마 열분사 코팅층의 밀착강도 향상기구)

  • Park, Jin Soo;Lee, Hyo Ryong;Lee, Beom Ho;Park, Joon Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.226-232
    • /
    • 2015
  • High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.

Effects of Hot Isostatic Pressing on Bond Strength and Elevated Temperature Characteristics of Plasma sprayed TBC (HIP처리가 플라즈마 용사된 열차폐 코팅층의 접착강도와 고온특성에 미치는 영향)

  • Park, Young-Kyu;Kim, Sung-Hwi;Kim, Doo-Soo;Lee, Young-Chan;Choi, Cheol;Jung, Jin-Sung;Kim, Gil-Moo;Kim, Jae-Chul
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2000
  • A study has been made to investigate the effects of hot isostatic pressing(HIP ping) on bond strength and elevated temperature characteristics of thermal barrier coating(TBC). The specimens were prepared by HIPping of TBC which is composed of the ceramic top coat(8wt%$Y_2$$O_3$-$ZrO_2$) and the metallic bond coat on the matrix of IN738LC superalloy. The results showed that the porosity and microcracks in the ceramic top coat of TBC were significantly decreased by HIP. As a result, the bond strength of the HIPped coating was increased above 48% compared to that of as-coated specimen and microstructure was homogenized. It was found that the thermal cycle resistance of HIPped coating was inferior to that of as-coated specimen. It was considered that this result was mainly caused by the reduction of internal defects in the top coat layer which could play a role in relaxing the thermal stress due to a large difference in thermal expansion between TBC and matrix.

  • PDF

Heat-treatment of Diffusional Behaviors of Plasma Spray Coated Layer for Fabrication of Abrasive Plates for Diamond (다이아몬드 가공을 위한 연마판의 제조 및 플라즈마 용사 코팅층의 열처리 거동)

  • Choi, Kwangsu;Yang, Seunga;Lee, Jong wan;Kim, Minkyu;Lee, Seong jun;Park, Joon Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.264-270
    • /
    • 2017
  • In this study, while the abrasive plates for diamond have been prepared through mechanical alloying and sintering of elemental powders, a fabrication route of plasma thermal coatings has been adopted for the first time. When diamond knife is sharped or polished, a metal plate has been applied, which is made of mechanical alloying and sintering. In this study, in order to develop a cost - effective manufacturing process, plasma coatings of FeCrNi and Ti on cast iron plate were applied together with Al intermediate layer coatings. The plasma coatings were successfully performed, and the optimum coating layer conditions were discussed in terms of micro-structural observations at the interfaces.

Convergence study of mechanical properties and biocompatability of Ti Gr4 surface coated with HA using plasma spray for ossoeintegration (골융합 촉진을 위한 Ti Gr4의 HA 코팅에 대한 물리적 특성과 생체안정성에 대한 융합적 연구)

  • Hwang, Gab-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.145-151
    • /
    • 2021
  • This study aimed to investigate the efficient conduct of HA coating on Ti Gr4 for the practical use of medical device. Ti Gr4 alloy specimens measuring 𝜱 25mm × 1mm were sprayed with hydroxyapatite using thermal spray according to ASTM F1185-88. The surface was evaluated at #120, #400, #1,000 sandpaper and barrel finishing. Each coating properties was analyzed using SEM, UTS 20,000psi cap. and in vitro cytotoxicity. Surface morphology consists of well molten particles with very little resolidified or unmolten areas. The average Ca/P ratio is 1.74 which is in good agreement with theoretical value of 1.67. The average roughness Ra is very representative of roughness of specimen. The coatings are dense and well adhered to the substrate. The average bond strength was 61.74 MPa with a standard deviation of 4.06 which indicates fairly reliable results for ASTM 633 type tests. Variations in results from jig design, epoxy used, crosshead speeds etc. in vitro cytotoxicity result had a Grade 3. The results of the study are expected to be helpful in osseointegration and plasma-spray HA coated Ti Gr4 are more satisfactory in HA coating thickness elevation which is preferable to any other system.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Hot Corrosion Behavior of Plasma Sprayed 4 mol% Y2O3-ZrO2 Thermal Barrier Coatings with Volcanic Ash (플라즈마 용사법으로 제작된 4mol% Y2O3-ZrO2 열차폐코팅의 화산재에 의한 고온열화거동)

  • Lee, Won-Jun;Jang, Byung-Koog;Lim, Dae-Soon;Oh, Yoon-Suk;Kim, Seong-Won;Kim, Hyung-Tae;Araki, Hiroshi;Murakami, Hideyuki;Kuroda, Seiji
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.353-358
    • /
    • 2013
  • The hot corrosion behavior of plasma sprayed 4 mol% $Y_2O_3-ZrO_2$ (YSZ) thermal barrier coatings (TBCs) with volcanic ash is investigated. Volcanic ash that deposited on the TBCs in gas-turbine engines can attack the surface of TBCs itself as a form of corrosive melt. YSZ coating specimens with a thickness of 430-440 ${\mu}m$ are prepared using a plasma spray method. These specimens are subjected to hot corrosion environment at $1200^{\circ}C$ with five different duration time, from 10 mins to 100 h in the presence of corrosive melt from volcanic ash. The microstructure, composition, and phase analysis are performed using Field emission scanning electron microscopy, including Energy dispersive spectroscopy and X-ray diffraction. After the heat treatment, hematite ($Fe_2O_3-TiO_2$) and monoclinic YSZ phases are found in TBCs. Furthermore the interface area between the molten volcanic ash layers and YSZ coatings becomes porous with increases in the heat treatment time as the YSZ coatings dissolved into molten volcanic ash. The maximum thickness of this a porous reaction zone is 25 ${\mu}m$ after 100 h of heat treatment.

Ni-BASE ALLOY SYSTEMS AS ALTERNATIVE TO HEXAVALENT CHROMIUM (경질크롬도금 대체용 Ni계 합금도금 기술)

  • Chang, Do-Yon;Lee, Kyu-Hwan;Kwon, Sik-Chol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.11-11
    • /
    • 2003
  • Electroplated hexavalent chromium coatings have been used in many technical applications since it was invented by G.J. Sargent in 1920. Because of the environmental problems and health risks associated with the use of hexavalent chromium, there has been an extensive search for alternative coatings with properties such as corrosion resistance and wear resistance, at a reasonable cost. However there is no single substitute that meets all the desirable performance characteristics of chromium. Advanced techniques, such as alloy plating, electroless plating, trivalent chromium plating, plasma and thermal spray coating, PVD and ion implantation, have been applied for replacing hexavalent chromium plating.

  • PDF

Thermal/Mechanical Properties of Hafnium Carbide Coatings on Carbon-Carbon Composites (탄소-탄소 복합재료의 하프늄 탄화물 코팅재의 열적/기계적 특성)

  • Choi, So-dam;Seo, Hyoung-IL;Lim, Byung-Joo;Sihn, Ihn Cheol;Lee, Jung Min;Park, Jong Kyoo;Lee, Kee Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.260-266
    • /
    • 2018
  • This study investigates thermal and mechanical characterization of Hafnium carbide coating on the $C_f-C$ composites. The hafnium carbide coatings by vacuum plasma spray on the C/C-SiC composites are prepared to evaluate oxidation and wear resistance. We perform the thermal durability tests by thermal cycling at $1200^{\circ}C$ for 10cycles in air and investigates the weight change of each cycle. We also evaluate the wear and indentation behavior using tungsten carbide ball indenter as a mechanical evaluation. As a result, the HfC coating is beneficial to reduce of weight loss during thermal cycling test and improve the elastic property of C/C-SiC composite. Especially, the HfC coating improves the wear resistance of C/C-SiC composite.

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.