• Title/Summary/Keyword: Thermal performance factors

Search Result 315, Processing Time 0.029 seconds

Development of the Index to Estimate Thermal Comfort in the Driving Room of Motorcar (자동차 운전석의 온열환경 쾌적성 평가를 위한 지표개발)

  • 최성주;박근상
    • Proceedings of the ESK Conference
    • /
    • 1998.04a
    • /
    • pp.188-193
    • /
    • 1998
  • The purpose of the study is to develop a numerical model based on experimental data to estimate the thermal comfort in the driving room of a motorcar. For the ecperiments, three air temperature level of 21, 23, 25 .deg. C are set to measure variable such as average skin temperature, R-R interval, the comfort sensation, and the performance level. By performing statistical analysis with the results obtainted, it is observed that two physiological factors-average skin temperature and R-R interval have significant relation with the thermal comfort in the driving room. Thus, those two factors are included as parameters in the proposed model to estimate the thermal comfort.

  • PDF

Wireless Measurement Technology for Power Plant Performance Diagnosis (발전설비의 성능진단 적용 무선계측 기술)

  • Kim, Ui-Hwan;Lee, Eung-Gon;Hong, Eun-Gi
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • The performance test is conducted for the purpose of determining the accurate thermal performance of the power generation facility or deriving the factors of thermal efficiency degradation. Compared to the acquisition method of power plant thermal performance test data by compensating cable or transmission cable, performance test using wireless instrument can acquire digital data in order to shorten the period due to installation and demolition of instrument and enhance safety of workers and relatively accurate data can be acquired thereby improving work efficiency. Wireless instruments have already been introduced to the market a long time ago, and some of them are used in industry such as petrochemical industry. However, there is no example which has been conducted for performance test of power generation facilities. In order to apply power generation facilities, a reliable system capable of acquiring performance data smoothly without affecting the control system is required. The wireless measurement system can eliminate the measurement defects and errors such as the damage due to the movement of the connecting cable, the extension due to the extension of the shield wire, the contact failure at the contact point between the measuring sensor and the connecting wire, This method has the advantage of collecting relatively accurate performance test data.

Investigation of Spacer Grid Thermal Mixing Performance Based on Hydraulic Tests

  • Yang, Sun-Kyu;Min, Kyung-Ho;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.377-382
    • /
    • 1995
  • An evaluation method of spacer grid thermal mixing performance in rod bundles is suggested based on hydraulic tests in a single phase flow. Heat transfer correlation was derived by the analogy between momentum and heat transfer. Three of major factors, such as blockage ratio of spacer grid, convective flow swirling, and turbulent intensity, were found to be significantly influential to the spacer grid thermal mixing performance. Local heat transfer near spacer grid was predicted for the hydraulic test of 6 ${\times}$ 6 rod bundles with neighboring different spacer grids.

  • PDF

A Study on Cooling for High Thermal Density Electronics Using Heat Sink and Heat Spreader (히트싱크 및 히트 스프레더를 이용한 고밀도 발열 전자부품의 방열 구조에 관한 연구)

  • Kang, Sung-Wook;Kim, Ho-Yong;Kim, Jin-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2286-2291
    • /
    • 2008
  • Some electronics component, which is adopted as components of antenna for radar or satellite system and used for amplifying signals to transmit, is accompanied by very significant heat dissipation levels because of the inefficiencies inherent in radio frequency wave generation. So, proper cooling performance for that system is base requirement for thermal design. On this paper, we applied heat spreading structures to reduce thermal density and find the optimum values of heat sink design factors through theoretically, numerically and evaluated by product test. As the results, the performance of the cooling system shows the propriety of cooling high density heat dissipation electronics components.

  • PDF

Effects of Thermal Aging of Natural Rubber Bearing on Seismic Performance of Bridges (천연고무받침의 열 노화가 교량 내진성능에 미치는 영향)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.855-864
    • /
    • 2013
  • The dynamic characteristics of natural rubber bearings, which are used as isolator, are dependent on the main rubber's dynamic behaviors and nonlinear properties. Rubber materials tend to undergo an aging process under the influence of mechanical or environmental factors, so they inevitably end up facing damage. A main cause of aging like this is known to be oxidization, which occurs through the heat of reaction at high temperatures. Accordingly, in this study an accelerated thermal aging test was carried out in order to compare the characteristic values of the bearings before and after thermal aging occurs. As a result of this experiment, it was found that a thermal aging phenomenon could have some effects on shear stiffness, energy absorption, and equivalent damping coefficients of the bearings. Furthermore, a deterioration in the dynamic properties of the natural rubber bearings caused by the thermal aging was applied to an actual bridge and then the effects of such thermal aging on the seismic performance of the bridge were also compared and analyzed based on numerical analysis. As a result of this analysis, it was found that the changes in the basic properties of the natural rubber bearings caused by the thermal aging bring only a minor effect on the seismic performance of bridges.

An Experimental Study of the Airside Performance of Slit Fin-and-Tube Heat Exchangers under Dry and Wet Conditions

  • Chang, Keun-Sun;Long, Phan-Than
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • Water condensate accumulated on the surface of a fin-and-tube heat exchanger significantly affects its thermal and hydraulic performances. The purpose of this study is to investigate the effects of condensate retention on the air-side heat transfer performance and flow friction for various flow and geometric conditions. Total of twelve samples of slit and plate fin-and-tube heat exchangers are tested under dry and wet conditions. The thermal fluid measurements are made using a psychrometric calorimeter. Frontal air velocity varies in the range from 0.7 m/s to 1.5 m/s. Using the experimental data, presented are heat transfer coefficients in terms of Colburn j-factors and friction factors, and these data are compared with the existing correlations.

Relationship of the U-Factor and Chemical Structure with Applied Metal and Polymer Material Assembly in Curtain Wall Frame

  • Park, Tongso
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.450-457
    • /
    • 2021
  • From measured thermal conductivity and modeling by simulation, this study suggests that U-factors are highly related to materials used between steel and polymer. The objective and prospective point of this study are to relate the relationship between the U-factor and the thermal conductivity of the materials used. For the characterization, EDX, SEM, a thermal conductive meter, and computer simulation utility are used to analyze the elemental, surface structural properties, and U-factor with a simulation of the used material between steel and polymer. This study set out to divide the curtain wall system that makes up the envelope into an aluminum frame section and entrance frame section and interpret their thermal performance with U-factors. Based on the U-factor thermal analysis results, the target curtain wall system is divided into fix and vent types. The glass is 24 mm double glazing (6 mm common glass +12 mm Argon +6 mm Low E). The same U-factor of 1.45 W/m2·K is applied. The interpretation results show that the U-factor and total U-value of the aluminum frame section are 1.449 and 2.343 W/m2·K, respectively. Meanwhile, those of the entrance frame section are 1.449 and 2.

Effects of Various Factors on the Energy Consumption of Korean-Style Apartment Houses (한국형 아파트의 냉난방 에너지에 미치는 제 인자의 영향)

  • 유호선;현석균;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.972-980
    • /
    • 2002
  • This work is aimed at estimating the effects of various factors on the energy consumption of Korean-style apartment houses using TRNSYS. The factors considered here include the nominal size of floor area, type of remodeling, azimuth, sidewall insulation, and window type. Based on some assumptions, an actual apartment house is simplified into a model that is used for thermal load calculations. The simplified model is validated by showing a good agreement with the actual one in the predicted result. Remodeling balconies into unconditioned buffer spaces yields a favorable thermal performance in comparison with the original type regardless of the nominal size. Incorporating balconies into a conditioned indoor space leads to sharp increases in thermal loads, which must be avoided in view of energy conservation as well as structural problem. A quantitative assessment on the azimuthal effect indicates that the heating energy can be saved up to 16% by taking the south or southeast direction. Reduction in the heating load with enhancing the sidewall insulation is gradual, so that a cost-effectiveness analysis may be needed when amending the regulations concerned. Glazing appears to significantly affect the heat transfer through window. A typical case illustrates that the heating load is decreased about 25% by simply adopting triple glazing instead of double glazing.

Simplified Analytical Model for Investigating the Output Power of Solar Array on Stratospheric Airship

  • Zhang, Yuanyuan;Li, Jun;Lv, Mingyun;Tan, Dongjie;Zhu, Weiyu;Sun, Kangwen
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.432-441
    • /
    • 2016
  • Solar energy is the ideal power choice for long-endurance stratospheric airships. The output performance of solar array on stratospheric airship is affected by several major factors: flying latitude, flight date, airship's attitude and the temperature of solar cell, but the research on the effect of these factors on output performance is rare. This paper establishes a new simplified analytical model with thermal effects to analyze the output performance of the solar array. This model consisting of the geometric model of stratospheric airship, solar radiation model and incident solar radiation model is developed using MATLAB computer program. Based on this model, the effects of the major factors on the output performance of the solar array are investigated expediently and easily. In the course of the research, the output power of solar array is calculated for five airship's latitudes of $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$, four special dates and different attitudes of five pitch angles and four yaw angles. The effect of these factors on output performance is discussed in detail. The results are helpful for solving the energy problem of the long endurance airship and planning the airline.

A parametric study on the performance of heat pump using standing column well(SCW) (스탠딩컬럼웰(SCW)을 적용한 지열히트펌프의 성능에 대한 매개변수 연구)

  • Chang, Jae-Hoon;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.625-630
    • /
    • 2010
  • Parametric study was performed using the SCW numerical model for evaluating the performance of the SCW. The five ground related parameters, which are porosity, hydraulic conductivity, thermal conductivity, specific heat, geothermal gradient, and five SCW design parameters, which are pumping rate, well depth well diameter, dip tube diameter, bleeding rate, were used in the study. Numerical simulations were performed for short-term (24-hour) simulation. The study results indicate that the parameters that have important influence on the performance of SCW were hydraulic conductivity, thermal conductivity, geothermal gradient, pumping rate, and bleeding rate. Overall, this study showed that various factors had a cumulative influence on the performance of the SCW, and a numerical simulation can be used to accurately predict the performance of the SCW.

  • PDF