Browse > Article
http://dx.doi.org/10.5139/IJASS.2016.17.3.432

Simplified Analytical Model for Investigating the Output Power of Solar Array on Stratospheric Airship  

Zhang, Yuanyuan (College of Geoscience and Surveying Engineering, China University of Mining and Technology)
Li, Jun (School of Aeronautic Science and Engineering, Beihang University)
Lv, Mingyun (School of Aeronautic Science and Engineering, Beihang University)
Tan, Dongjie (School of Aeronautic Science and Engineering, Beihang University)
Zhu, Weiyu (School of Aeronautic Science and Engineering, Beihang University)
Sun, Kangwen (School of Aeronautic Science and Engineering, Beihang University)
Publication Information
International Journal of Aeronautical and Space Sciences / v.17, no.3, 2016 , pp. 432-441 More about this Journal
Abstract
Solar energy is the ideal power choice for long-endurance stratospheric airships. The output performance of solar array on stratospheric airship is affected by several major factors: flying latitude, flight date, airship's attitude and the temperature of solar cell, but the research on the effect of these factors on output performance is rare. This paper establishes a new simplified analytical model with thermal effects to analyze the output performance of the solar array. This model consisting of the geometric model of stratospheric airship, solar radiation model and incident solar radiation model is developed using MATLAB computer program. Based on this model, the effects of the major factors on the output performance of the solar array are investigated expediently and easily. In the course of the research, the output power of solar array is calculated for five airship's latitudes of $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$, four special dates and different attitudes of five pitch angles and four yaw angles. The effect of these factors on output performance is discussed in detail. The results are helpful for solving the energy problem of the long endurance airship and planning the airline.
Keywords
Simplified model; Output power; Solar array; Stratospheric airship; Thermal effects;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Tang, Z.H., Liu, P.Q., Sun, J.W., Chen, Y.X., Guo, H. and Li, G.C., "Performance of Contra-Rotating Propellers for Stratospheric Airships"., International Journal of Aeronautical and Space Sciences, Vol. 16, No. 4, 2015, pp. 485-492. DOI: http://dx.doi.org/10.5139/IJASS.2015.16.4.485   DOI
2 Tang, Z.H., Liu, P.Q., Guo, H., Yan, J. and Li, G.C., "Two-Dimensional Moving Blade Row Interactions in a Stratospheric Airship Contra-Rotating Open Propeller Configuration", International Journal of Aeronautical and Space Sciences, Vol. 16, No. 4, 2015, pp. 500-509. DOI: http://dx.doi.org/10.5139/IJASS.2015.16.4.500   DOI
3 J. Li, M. Lv, Sun, K. and Zhang, Y. , "Stratospheric aerostat- A new high altitude scientific platform", Current Science, 2016.
4 Jun Li, M.L., Kangwen Sun., "Research on optimum area of solar array for stratospheric solar-powered airship", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016.
5 Choi, S.H., Elliott, J.R., King, G.C., Park, Y., Kim, J.W., Chu, S.H. and Song, K.D., "Power technology for applicationspecific scenarios of high altitude airships", 3rd International Energy Conversion Engineering Conference, 1, 2005, pp. 174-182. DOI: http://dx.doi.org/10.2514/6.2005-5529.   DOI
6 Nachbar, D. and Fabel, J. "Next generation thermal airship", AIAA paper 6839, 2003. DOI: http://dx.doi.org/ 10.2514/6.2003-6839.   DOI
7 Colozza, A., "PV / Regenerative Fuel Cell High Altitude Airship Feasibility Study", 2nd AIAA "Unmanned Unlimited" Conf. and Workshop & Exhibit, 2003. DOI: http://dx.doi.org/10.2514/6.2003-6663.   DOI
8 Gao, X.-Z., Hou, Z.-X., Guo, Z., Liu, J.-X. and Chen, X.-Q., "Energy management strategy for solar-powered high-altitude long-endurance aircraft", Energy Conversion and Management, Vol. 70, No. 2013, pp. 20-30. DOI: http:// dx.doi.org/10.1016/j.enconman.2013.01.007.   DOI
9 Choi, S.H., Elliott, J.R. and King, G.C., "Power budget analysis for high altitude airships", Proceedings of SPIE - The International Society for Optical Engineering, 2006. DOI: http://dx.doi.org/10.1117/12.663586.   DOI
10 Naito, H., Eguchi, K., Hoshino, T., Okaya, S., Fujiwara, T., Miwa, S. and Nomura, Y., "Design and analysis of solar power system for SPF airship operations", 13th AIAA Lighter- Than Air Technology Conference, 1999. DOI: http://dx.doi.org/10.2514/6.1999-3913.   DOI
11 Wang, H., Song, B. and Zuo, L., "Effect of High-Altitude Airship's Attitude on Performance of its Energy System", Journal of Aircraft, Vol. 44, No. 6, 2007, pp. 2077-2080. DOI: http://dx.doi.org/10.2514/1.31505.   DOI
12 Miller, G., Stoia, T., Harmala, D. and Atreya, S., "Operational Capability of High Altitude Solar Powered Airships", AIAA 5th Aviation, Technology, Integration, and Operations Conference, 2005. DOI: http://dx.doi.org/10.2514/6.2005-7487.   DOI
13 Su, J. and Song, B., "Curved surface renewable solar cell applied to near space airship energy system", ICEMS, 2008, pp. 2621-2626.
14 Wei, Z., Qi, S., Yong, L., Zhihong, W. and Lingyun, H., "Computation and analysis of power generated by the solar cell array of a stratospheric airship", Journal of Astronautics, Vol. 31, No. 4, 2010, pp. 1224-1230. DOI: http://dx.doi.org/10.3873 j.issn.1000-1328.2010.04.046
15 Garg, A.K., Burnwal, S.K., Pallapothu, A., Alawa, R.S. and Ghosh, A.K., "Solar Panel Area Estimation and Optimization for Geostationary Stratospheric Airships", 11th AIAA Aviation Technology, Integration,and Operations (ATIO) Conference, 2011. DOI: http://dx.doi.org/10.2514/6.2011-6974.   DOI
16 Li, X., Fang, X. and Dai, Q., "Research on Thermal Characteristics of Photovoltaic Array of Stratospheric Airship", Journal of Aircraft, Vol. 48, No. 4, 2011, pp. 1380-1386. DOI: http://dx.doi.org/10.2514/1.C031295.   DOI
17 Xu, G., Li, Z., Wang, S. and Jiang, L., "Study on high efficiency power supply with wide input voltage for stratospheric airships", IEEE Aerospace Conference Proceedings, 2014. doi: 10.1109/AERO.2014.6836517.
18 Khoury, G.A., "Airship technology", Cambridge University Press, 2012.
19 Farley, R.E., "BalloonAscent - 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons", AIAA 5th Aviation, Technology, Integration, and Operations Conference, 1-15, 2005. DOI: http://dx.doi.org/ 10.2514/6.2005-7412.   DOI
20 Ran, H., Thomas, R. and Mavris, D., "A comprehensive global model of broadband direct solar radiation for solar cell simulation", 45th AIAA Aerospace Sciences Meeting 2007, Jan. 8 - Jan. 11, 1, 2007, PP.262-277. DOI: http://dx.doi.org/10.2514/6.2007-33.   DOI
21 Shi, H., Song, B., Yao, Q. and Cao, X., "Thermal performance of stratospheric airships during ascent and descent", Journal of Thermophysics and Heat Transfer, Vol. 23, No. 4, 2009, pp. 816-821. DOI: http://dx.doi.org/10.2514/1.42634.   DOI
22 Dai, Q., Fang, X., Li, X. and Tian, L., "Performance simulation of high altitude scientific balloons", Advances in Space Research, Vol. 49, No. 6, 2012, pp. 1045-1052. DOI: http://dx.doi.org/10.1016/j.asr.2011.12.026.   DOI
23 Sun, K., Yang, Q., Yang, Y., Wang, S., Xie, Y., Sun, M., Chen, X. and Xu, J., "Numerical Simulation and Thermal Analysis of Stratospheric Airship". 2014 Asia-Pacific International Symposium on Aerospace Technology, 2014. DOI: http://dx.doi.org/10.1016/j.proeng.2014.12.600.   DOI
24 Liu, D., Yang, Y., Lu, M. and Wu, Z., "Effect of envelop thermal radiative properties on the stratospheric superpressure LTA vehicle helium temperature", Journal of Beijing University of Aeronautics and Astronautics, Vol. 36, No. 7, 2010, pp. 836-840. DOI: http://dx.doi.org/10.13700/j.bh.1001-5965.2010.07.009   DOI
25 Dolce, J.L. and Collozza, A., "High-Altitude, Long-Endurance Airships for Coastal Surveillance", NTIS/NASA, 2005.
26 Library, W. "American society of heating, refrigerating and air-conditioning engineers", Atlanta, GA, 1997.
27 Long, Y., Wang, L. and Cappelleri, D.J., "Modeling and global trajectory tracking control for an over-actuated MAV", Advanced Robotics, Vol. 28, No. 3, 2014, pp. 145-155. DOI: http://dx.doi.org/10.1080/01691864.2013.861339.   DOI
28 Colozza, A.J., Corporation, A., Park, B. and Ohio. "Convective Array Cooling for a Solar Powered Aircraft", NASA/CR, 2003.
29 Li, J., Lv, M., Tan, D., Zhu, W., Sun, K. and Zhang, Y., "Output performance analyses of solar array on stratospheric airship with thermal effect", Applied Thermal Engineering, Vol. 104, No. 2016, pp. 743-750. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.05.122.   DOI
30 Li, J., Lv, M., Sun, K. and Zhu, W., "Thermal insulation performance of lightweight substrate for solar array on stratospheric airships", Applied Thermal Engineering, Vol. 107, No. 2016, pp. 1158-1165. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.07.045.   DOI
31 Xiong, J., Bai, J.B. and Chen, L., "Simplified analytical model for predicting the temperature of balloon on highaltitude", International Journal of Thermal Sciences, Vol. 76, No. 2014, pp. 82-89. DOI: http://dx.doi.org/ 10.1016/j.ijthermalsci.2013.08.002.   DOI