• Title/Summary/Keyword: Thermal pastes

Search Result 47, Processing Time 0.028 seconds

Effects of Silica Filler and Diluent on Material Properties of Non-Conductive Pastes and Thermal Cycling Reliability of Flip Chip Assembly

  • Jang, Kyung-Woon;Kwon, Woon-Seong;Yim, Myung-Jin;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.9-17
    • /
    • 2003
  • In this paper, thermo-mechanical and rheological properties of NCPs (Non-Conductive Pastes) depending on silica filler contents and diluent contents were investigated. And then, thermal cycling (T/C) reliability of flip chip assembly using selected NCPs was verified. As the silica filler content increased, thermo-mechanical properties of NCPs were changed. The higher the silica filler content was added, glass transition temperature ($T_g$) and storage modulus at room temperature became higher. While, coefficient of thermal expansion (CTE) decreased. On the other hand, rheological properties of NCPs were significantly affected by diluent content. As the diluent content increased, viscosity of NCP decreased and thixotropic index increased. However, the addition of diluent deteriorated thermo-mechanical properties such as modulus, CTE, and $T_g$. Based on these results, three candidates of NCPs with various silica filler and diluent contents were selected as adhesives for reliability test of flip chip assemblies. T/C reliability test was performed by measuring changes of NCP bump connection resistance. Results showed that flip chip assembly using NCP with lower CTE and higher modulus exhibited better T/C reliability behavior because of reduced shear strain in NCP adhesive layer.

  • PDF

A Study about the Strength and Microstructure of Hardened Cement Pastes Including Nanofibers (나노 섬유를 혼합한 시멘트 페이스트의 미세구조와 강도에 대한 연구)

  • Nguyen, Tri N.M;Kim, Jung Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.177-182
    • /
    • 2020
  • In this study, the effect of nanofibers in cement pastes on the compressive and tensile strength of hardened cement pastes was studied. Two types of nanofibers, nylon 66 nanofibers and carbon nanotube-nylon 66 hybrid nanofibers, were manufactured by electrospinning methodology and mixed in cement powder respectively. The specimens for experiments were prepared by water to cement ratio of 0.5 and cured in water for 28 days. The effect of nanofibers on the increase of the compressive and tensile strength were confirmed by the experimental results. The well-linking effect of nanofibers in the microstructure of the hardened cement pastes has been found by scanning electron microscope (SEM) analysis and well-explained for the increase in mechanical strength. Besides, field emission transmission electron microscope (FE-TEM) analysis and thermal gravimetric analysis (TGA) have also been conducted to analyze the properties of nanofibers as well as the microstructure of the hardened modified cement pastes.

Thermal Dissipation Property of Acrylic Composite Films Containing Graphite and Carbon Nanotube (흑연과 탄소나노튜브 함유 아크릴 복합체 박막의 방열 특성)

  • Kim, Junyeong;Kang, Chan Hyoung
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.3
    • /
    • pp.198-205
    • /
    • 2017
  • Thermal dissipation was investigated for poly methyl methacrylate (PMMA) composite films containing graphite and multi wall carbon nanotube(CNT) powders as filler materials. After mixing PMMA with fillers, solvent, and dispersant, the pastes were prepared by passing through a three roll mill for three times. The prepared pastes were coated $15{\sim}40{\mu}m$ thick on a side of 0.4 mm thick aluminium alloy plate and dried for 30 min at $150^{\circ}C$ in an oven. The content of fillers in dried films was varied as 1, 2, and 5 weight % maintaining the ratio of graphite and CNT as 1:1. Raman spectra from three different samples exhibited D, G and 2D peaks, as commonly observed in graphite and multi wall CNT. Among those peaks, D peak was prominent, which manifested the presence of defects in carbon materials. Thermal emissivity values of three samples were measured as 0.916, 0.934, and 0.930 with increasing filler content, which were the highest ever reported for the similar composite films. The thermal conductivities of three films were measured as 0.461, 0.523, and $0.852W/m{\cdot}K$, respectively. After placing bare Al plate and film coated samples over an opening of a polystyrene box maintained for 1 h at $92^{\circ}C$, the temperatures inside and outside of the box were measured. Outside temperatures were lower by $5.4^{\circ}C$ in the case of film coated plates than the bare one, and inside temperatures of the former were lower by $3.6^{\circ}C$ than the latter. It can be interpreted that the PMMA composite film coated Al plates dissipate heat quicker than the bare Al plate.

Effects of constituents in CNT pastes on the field emission characteristics of carbon nanotubes

  • Yoon, Seung-Il;Kim, Sam-Soo;Lee, Yang-Kyu;Kim, Tae-Kwon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1206-1209
    • /
    • 2006
  • Carbon nanotubes (CNTs) have been significantly used for the field emitters for display applications. However, the lifetime of CNT emitters which are formed by screen printing technique is not guaranteed yet, because the constituents in CNT paste affect the lifetime of CNTs. The CNT pastes for screen printing are normally composed of organic vehicles (nitro cellulose, ethyl cellulose, etc) and additives (glass frits, ITO, etc) with CNTs. In this study, the effects of constituents in CNT pastes on the lifetime and emission characteristics of CNTs were investigated by thermal and electrical analysis. Use of glass frits worsened the lifetime and electron emission of CNTs. However, an addition of ITO to CNT paste rather improved the lifetime of CNTs. Degradation of CNTs was small when nitro cellulose was used in CNT paste as an organic vehicle.

  • PDF

Thermal Process Optimization of Pb-free Ag-paste and Evaluation of Electrical Properties in Mono-Si Solar Cell (단결정 Si 태양전지 적용을 위해 제조된 무연 은 페이스트의 열 공정 최적화 및 전기적 특성 평가)

  • Jeong, Ji-Hyun;Kim, Sung-Jin;Son, Chang-Rok;Ur, Soon-Chul;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.844-849
    • /
    • 2011
  • Two kind of Ag-pastes were prepared for integrating the bulk Si solar cell. One is the Ag-paste with Pb-based glass frit and the other is that with Bi-based glass frit. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 2 wt% additives. After fabricating the Ag-pastes, they was coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. The solar cell efficiency was 17.6% in the case of the Pb-based Ag-paste. However that was 16.2% in the solar cell integrated with the Bi-based Ag-paste. The lower performance in Bi-based Ag-paste was caused by the higher series resistance and the lower shunt resistance in comparison with the Pb-based Ag-paste.

A Study on Rheology Property and Characteristics of Thermal-curable Ag Paste for Polymer Gravure Printing (Polymer Gravure Printing용 열경화형 Ag Paste의 물성과 레올로지 특성 연구)

  • Ku, Tae-Hee;Nam, Su-Yong;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2012
  • In this experiment, we have manufactured thermal-curable silver pastes for direct printing. And to enhance conductivity, printability, adhesion and hardness during polymer direct-gravure prints, we have manufactured Ag pastes by adding variety of filter contents. Then we have investigated characteristics of rheology in paste according to the gravure printability and the properties of printed conductive patterns. Depending on a variety of Ag powder, there was a big difference in sharpness of printed pattern. And also by the use of carbon, there was a big difference in amount of solvent used, conductivity and in hardness. We could improve doctoring and the sharpness of a pattern by adding Ag paste in carbon particle, but as we have used nano-sized particle, there was an increase in the amount of solvent used and also we have found out that it gives a bad effect as adhesive and hardness becomes weaker. Even though Ag particle has the same spherical shape, the surface treatments could differ from one another. And by the appropriate choice and with the suitable combination of Ag powder, excellent printability and conductivity could be obtained.

Structural and Physical Properties of Sealant Paste Prepared by Silica/Polymer Composites (실리카/고분자 복합체를 이용한 실란트 페이스트의 구조 및 물리적 특성)

  • Yoon, Jong-Kuk;Park, Jung-Il;Koo, Kyung-Wan;Jang, Young-Sil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.916-921
    • /
    • 2012
  • Sealant paste with silica immersed in cross-linked epoxy-acrylate polymer resin was prepared by thermal and UV curing process. The curing mechanism of polymer resin resulted from 2 functional groups of epoxy and acrylic structure. The properties of microstructure, thermal conductivity and mechanical strength were investigated for its various applications. The adhesion strength is increased by increasing the thermal curing time until 15 minutes, and curing efficiency is saturated over 20 minutes. The increase rate per day of pot life and viscosity is 4.8%, indicating it has excellent storage stability. It is found that the formulation of silica pastes can be applied to heavy industries, building materials, display and various industries.

($TruNano^{TM}$ processing of dielectric layers and barrier-rib on soda-lime glass substrate for PDP panel

  • Lee, Michael M.S.;Kim, Nam-Hoon;Cheon, Chae-Il;Cho, Guang-Sup;Kim, Jeong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.125-125
    • /
    • 2006
  • We present a low temperature thermal process for the transparent dielectric layer, barrier rib, and white back dielectric layer on the soda-lime glass substrate of the PDP by the $TruNano^{TM}$ processor in combination with a compositional modification to the conventional dielectric pastes. By this method the firing temperature can be lowered by more than $100^{\circ}C$.

  • PDF

Electrical Properties of Solar Cells With the Reactivity of Ag pastes and Si Wafer (Ag paste와 실리콘 웨이퍼의 반응성에 따른 태양전지의 전기적 성질)

  • Kim, Dong-Sun;Hwang, Seong-Jin;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.54-54
    • /
    • 2009
  • Ag thick film has been used for electrode materials with the excellent conductivity. Ag electrode is used in screen-printed silicon solar cells as a electrode material. Compared to photolithography and buried-contact technology, screen-printing technology has the merit of fabricating low-priced cells and enormous cells in a few hours. Ag paste consists of Ag powders, vehicles and additives such as frits, metal powders (Pb, Bi, Zn). Frits accelerate the sintering of Ag powders and induce the connection between Ag electrode and Si wafer. Thermophysical properties of frits and reactions among Ag, frits and Si influence on cell performance. In this study, Ag pastes were fabricated with adding different kinds of frits. After Ag pastes were printed on silicon wafer by screen-printing technology, the cells were fired using a belt furnace. The cell parameters were measured by light I-V to determine the short-circuit current, open-circuit voltage, FF and cell efficiency. In order to study the relationship between the reactivity of Ag, frit, Si and the electrical properties of cells, the reaction of frits and Si wafer on was studied with thermal properties of frits. The interface structure between Ag electrode and Si wafer were also measured for understanding the reactivity of Ag, frit and Si wafer. The excessive reactivity of Ag, frit and Si wafer certainly degraded the electrical properties of cells. These preliminary studies suggest that reactions among Ag, frits and Si wafer should optimally be controlled for cell performances.

  • PDF

Compositions for Photosensitive Polymer Resistor Paste Using Epoxy Acrylates (에폭시 아크릴레이트를 이용한 감광성 폴리머 저항 페이스트 조성)

  • Kim, Dong Kook;Park, Seong-Dae;Lee, Kyu-Bok;Kyoung, Jin-Bum
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2012
  • Using six kinds of epoxy acrylates and a conductive carbon black, photosensitive resistor pastes were fabricated and then their developability in alkaline aqueous solution and the resistance values after thermal curing were evaluated. In order to impart the photocurability by UV exposure and the developability on alkaline solution, epoxy acrylate oligomers with carboxyl group, acrylate monomers, a photoinitiator and so forth were used. In addition, an organic peroxide was added into the paste to get a thermally curable composition. As a result, some of the pastes were not developed depending on the kinds of oligomers and, in the developed pastes, the measured resistance showed the different values depending on their compositions, even though they contain the same amount of carbon black. Finally, the optimum oligomer was selected and then, by adjusting the amount of carbon black, the kind of monomer and the curing temperature, the photosensitive resistor paste composition which showed the sheet resistance of about 0.5 $k{\Omega}/sq.$ could be obtained.