• 제목/요약/키워드: Thermal modeling

검색결과 972건 처리시간 0.035초

정지위성 해색 촬영기의 열모델링 기술 (THERMAL MODELING TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER)

  • 김정훈;전형열;한조영;김병수
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.28-34
    • /
    • 2010
  • Conductive and radiative thermal model configurations of an imager of a geostationary satellite are presented. A two-plane method is introduced for three dimensional conductive coupling which is not able to be treated by thin shell plate thermal modeling technique. Especially the two-plane method is applied to massive matters and PIP(Payload Interface Plate) in the imager model. Some massive matters in the thermal model are modified by adequate correction factors or equivalent thickness in order to obtain the numerical results of thermal modeling to be consistent with the analytic model. More detailed nodal breakdown is specially employed to the object which has the rapid temperature gradient expected by a rule of thumb. This detailed thermal model of the imager is supposed to be used for analyses and test predictions, and be correlated with the thermal vacuum test results before final in-flight predictions.

다중열원모델의 열모드기반 열변위오차 예측 (Investigation of the Thermal Mode-based Thermal Error Prediction for the Multi-heat Sources Model)

  • 한준안;김규하;이선규
    • 한국정밀공학회지
    • /
    • 제30권7호
    • /
    • pp.754-761
    • /
    • 2013
  • Thermal displacement is an important issue in machine tool systems. During the last several decades, thermal error compensation technology has significantly reduced thermal distortion error; this success has been attributed to the development of a precise, robust thermal error model. A major advantage of using the thermal error model is instant compensation for the control variables during the modeling process. However, successful application of thermal error modeling requires correct determination of the temperature sensor placement. In this paper, a procedure for predicting thermal-mode-based thermal error is introduced. Based on this thermal analysis, temperature sensors were positioned for multiple heat-source models. The performance of the sensors based on thermal-mode error analysis, was compared with conventional methods through simulation and experiments, for the case of a slide table in a transient state. Our results show that for predicting thermal error the proposed thermal model is more accurate than the conventional model.

Electro-Thermal Modeling and Experimental Validation of Integrated Microbolometer with ROIC

  • Kim, Gyungtae;Kim, Taehyun;Kim, Hee Yeoun;Park, Yunjong;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권3호
    • /
    • pp.367-374
    • /
    • 2016
  • This paper presents an electro-thermal modeling of an amorphous silicon (a-Si) uncooled microbolometer. This modeling provides a comprehensive solution for simulating the electro-thermal characteristics of the fabricated microbolometer and enables electro-thermal co-simulation between MEMS and CMOS integrated circuits. To validate this model, three types of uncooled microbolometers were fabricated using a post-CMOS surface micromachining process. The simulation results show a maximum discrepancy of 2.6% relative to the experimental results.

Cross Talk among Pyroelectric Sensitive Elements in Thermal Imaging Device

  • Bang Jung Ho;Yoon Yung Sup
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.780-783
    • /
    • 2004
  • The two-dimensional modeling of the non-stationary thermal state and voltage responsivity of the sensitive elements usually used in solid-state pyroelectric focal plane arrays are presented. Temperature distributions under periodical thermal excitation and the response of the thermal imaging device, which is composed of the pyroelectric sensitive elements mounted on a single silicon substrate, are numerically calculated. The sensitive element consists of a covering metal layer, infrared polymer absorber, front metal contact, sensitive pyroelectric element, the interconnecting column and the bulk silicon readout. The results of the numerical modeling show that the thermal crosstalk between sensitive elements to be critical especially at low frequency (f < 10Hz) of periodically modulated light. It is also shown that the use of our models gives the possibility to improve the design, operating regimes and sensitivity of the device.

  • PDF

PREDICTION OF THERMAL STRATIFICATION IN A U-BENT PIPE: A URANS VALIDATION

  • Pellegrini, M.;Endo, H.;Ninokata, H.
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.33-42
    • /
    • 2012
  • In the present study, CFD is employed to investigate phenomena occurring during a process of thermal stratification in U-bent pipes at transitional Reynolds number. URANS evaluation had been chosen for its low computational costs during transient analysis and for the evaluation of modeling performance in these conditions. Application of CFD at transitional Reynolds number and buoyancy driven flows indeed contains deeper uncertainties in relation to the range of applicability for hydrodynamic and thermal models. The methodology applied in the work points out, through validations with the basic problems constituting the complex stratified phenomenon, the applicability of the current turbulence modeling. Accurate predictions have been found in relation to transitional Reynolds number in bent pipes and region of stability induced by the gravitational field. On the other hand the defects introduced in the unstable region of the U bent pipe, are discussed in relation to the adopted modeling.

등가 열회로를 이용한 물체의 적외선 특성 모델링 (IR signature modeling using an equivalent thermal circuit)

  • 홍현기;한성현;홍경표;최종수
    • 전자공학회논문지S
    • /
    • 제35S권1호
    • /
    • pp.122-129
    • /
    • 1998
  • For generation and analysis of the multi-sensory image, we propose a new three dimensional (3D) modeling method considering an iternal heat source. We represent the heat conduction process within th object as an equivalent thermal circuit. Therefore, without a complex computation, our modeling approach can obtain thermal features of the object. By using the faceted model, the proposed method can express the accurate visual signatures of the object. Comparing the estimates datum with the obtained surface temperatures, we have demonstrated that the proposed method can provide a precise thermal features. The thermal images by out model is applicable to simulate a tracking loop of an IR missile.

  • PDF

임펄스 착자요크의 열전달 모델링 및 특성 해석 (Heat kTransfer Modeling and Characteristics Analysis of Impulsed Magnetizing Fisture)

  • 백수현;김필수
    • 대한전기학회논문지
    • /
    • 제43권3호
    • /
    • pp.381-387
    • /
    • 1994
  • In this paper, we found the improved SPICE heat transfer modeling of impulsed magnetizing fixture system and investigated temperature characteristics using the proposed model. As the detailed thermal characteristics of magnetizing fixture can be obtained, the efficient design of the impulsed magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important of forecast the characteristics of the magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important to forecast the characteristics of the magnetizing circuits under different conditions. The capacitor voltage was not raised above 810[V] to protect the magnetizing fixture from excessive heating. The purpose of this work is to compute the temperature increasing for different magnetizing conditions. The method uses multi-lumped model with equivalent thermal resistance and thermal capacitance. The reliable results are obtained by using iron core fixture (stator magnet of air cleaner DC motor) coupled to a low-voltage magnetizer(charging voltage : 1000[V], capacitor : 3825[$\mu$F]. The modeling and experimental results are in close aggrement.

  • PDF

마이크로 구멍 가공 중의 열적 현상에 관한 연구 (A Study on the Thermal Behavior during Micro Hole Drilling)

  • 류승호;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.79.1-84
    • /
    • 1995
  • The thermal analysis method containing micro drilling characteristic is proposed for the first time. There are such problems in thermal analysis of micro hole drilling as the thermal modeling complexity of drilling process and the undesirable micro drilling characteristic. Especially, the undesirable micro drilling characteristic prevents our using conventional thermal modeling. To model the thermal behavior of the micro drilling process, the finite different method, where heat source vectors are distributed by the measured rhrust and torque, is proposed. This method agrees with thermal behavior of the real system. And, it enable to predict the temperature field near the drill during. The validity of this method is verified in comparing with experimental results.

  • PDF