• 제목/요약/키워드: Thermal model

검색결과 4,377건 처리시간 0.037초

EOS-C Ver.3.0 비행모델의 열제어계 개발 및 설계 검증 (Development and Design Verification of Thermal Control Subsystem for EOS-C Ver.3.0 Flight Model)

  • 장진수;양승욱;김이을
    • 한국항공우주학회지
    • /
    • 제40권10호
    • /
    • pp.872-881
    • /
    • 2012
  • (주)쎄트렉아이는 지구관측위성의 주 탑재체로 사용될 고해상도 전자광학카메라, EOS-C Ver.3.0의 FM 개발을 완료하였다. EOS-C Ver.3.0 FM은 STM 열진공 시험 결과를 이용한 설계 최적화를 통해 STM 대비 향상된 열제어 성능을 갖도록 설계되었다. FM 개발 후, 인수(acceptance) 수준의 열진공 시험 수행을 통해 작업도(workmanship) 확인을 완료하였다. 또한 열평형 시험 결과를 이용하여 열-수치 모델에 대한 검증 작업을 수행, 열-수치 모델이 EOS-C Ver.3.0 FM의 실제 열적 특성을 잘 모사하고 있음을 확인하였다.

Mixing Rules of Young's Modulus, Thermal Expansion Coefficient and Thermal Conductivity of Solid Material with Particulate Inclusion

  • Hirata, Yoshihiro;Shimonosono, Taro
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.43-49
    • /
    • 2016
  • This analyzed a Young's modulus (E), a thermal expansion coefficient (TEC, ${\beta}$) and a thermal conductivity (${\kappa}$) of the material with simple cubic particulate inclusion using two model structures: a parallel structure and a series structure of laminated layers. The derived ${\beta}$ equations were applied to calculate the ${\beta}$ value of the W-MgO system. The accuracy was higher for the series model structure than for the parallel model structure. Young's moduli ($E_c$) of sintered porous alumina compacts were theoretically related to the development of neck growth of grain boundary between sintered two particles and expressed as a function of porosity. The series structure model with cubic pores explained well the increased tendency of $E_c$ with neck growth rather than the parallel structure model. The thermal conductivity of the three phase system of alumina-mullite-pore was calculated by a theoretical equation developed in this research group, and compared with the experimental results. The pores in the sintered composite were treated as one phase. The measured thermal conductivity of the composite with 0.5-25% porosity (open and closed pores) was in accordance with the theoretical prediction based on the parallel structure model.

Thermal Fatigue Test of an Annular Structure

  • Hwang Jeong-Ki;Suh Chang-Min;Kim Chae-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.59-65
    • /
    • 2006
  • A half-scaled large test model for the main components of the real annular structure was built and the thermal behaviors were experimented and obtained by thermal cyclic loads. The model design and the test conditions for the thermal loads were determined to take into consideration the thermal and mechanical loads acting on the real annular structure by finite element analyses. Temperature profiles and strains of the main components of the model were measured at an early stage of the test and periodically throughout the test in the given test conditions. After completion of the thermal cyclic tests, no evidence of crack initiation and propagation were identified by a dye penetration test. The measured strains at the critical parts were slightly increased proportionally with the increase in the number of the thermal cycles.

플립칩 본더용 가열기의 열특성 해석을 위한 수치모델 (A Numerical Model to Analyze Thermal Behavior of a Radiative Heater Disigned for Flip-Chip Bonders)

  • 이상현;곽호상;한창수;류도현
    • 한국전산유체공학회지
    • /
    • 제8권4호
    • /
    • pp.41-49
    • /
    • 2003
  • This study presents a numerical model to analyze dynamic thermal behavior of a hot chuck designed for flip-chip bonders. The hot chuck of concern is a heater which has been specifically developed for accomplishing high-speed and ultra-precision soldering. The characteristic features are radiative heat source and the heating tool made of a material of high thermal diffusivity. A physical modeling has been conducted for the network of heat transport. A simplified finite volume model is deviced to simulate time-dependent thermal behavior of the heating tool on which soldering is achieved. The reliability of the proposed numerical model is verified experimentally. A series of numerical tests illustrate the usefulness of the numerical model in design analysis.

Strip Tension Control Considering the Temperature Change in Multi-Span Systems

  • Lee Chang Woo;Shin Kee Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.958-967
    • /
    • 2005
  • The mathematical model for tension behaviors of a moving web by Shin (2000) is extended to the tension model considering the thermal strain due to temperature variation in furnace. The extended model includes the terms that take into account the effect of the change of the Young's Modulus, the thermal coefficient, and the thermal strain on the variation of strip tension. Computer simulation study proved that the extended tension model could be used to analyze tension behaviors even when the strip goes through temperature variation. By using the extended tension model, a new tension control method is suggested in this paper. The key factors of suggested tension control method include that the thermal strain of strip could be compensated by using the velocity adjustment of the helper-rollers. The computer simulation was carried out to confirm the performance of the suggested tension control method. Simulation results show that the suggested tension control logic not only overcomes the problem of the traditional tension control logic, but also improves the performance of tension control in a furnace of the CAL (Continuous Annealing Line).

Thermal stress analysis around a cavity on a bimetal

  • Baytak, Tugba;Bulut, Osman
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.69-75
    • /
    • 2019
  • The plates made of two materials joined to each other having the different coefficient of thermal expansions are frequently encountered in the industrial applications. The stress analysis of these members under the effect of high-temperature variation has great importance in design. In this study, the stress analysis of the experimental model developed for the problem considered here was performed by the method of photothermoelasticity. The thermal strains were formed by the mechanical way and these were fixed by the strain freezing method. For the stress measurements, the method of slicing is applied which provides three-dimensional stress analysis. The analytical solution in the literature was compared with the related stress distribution obtained from the model. Moreover, the axisymmetric finite element model developed for the problem was solved by ABAQUS and the results obtained here compared with those of the experimental model and the analytical solution. As a result of this study, this experimental method and numerical model can be used for these type of thermal stress problems which have not been comprehensively analyzed yet.

金型의 모서리부 形狀이 熱應力分布에 미치는 影響 (The effect of corner shape in the casting mould on thermal stresses distribution)

  • 민수홍;구본권;김옥삼
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.567-574
    • /
    • 1991
  • In this study thermal stress generated in three ingot moulds(GC25) during the solidification process of aluminum were analyzed by the two-dimensional thermo-elasto-plastic theory. In temperature analysis, all of the three models are shown steep temperature rising each case in initial stage of cooling. In thermal stress analysis, all of three models took compressible stress on inside wall of the mould, and tensible along with on out side. Model 2 take place less compressible, tensible stress then model 1. But model 3. have similar as thermal stress as model 2. The analysis will made one possible to calculate an optimum mould shape whose thermal stress gradient becomes minimum.

천수만 해역에서 온배수 확산모델의 적용 (Application of Thermal Discharge Dispersion Model on Cheonsu Bay)

  • 박영기
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.169-180
    • /
    • 1995
  • This Daper presents effective simulation of the dispersion of thermal discharge which can be relesed at Boryong power plant. Applied numerical models are finite difference method for hydrodynamic analysis and Masch-model comprised of conditions for ambient current velocity. Application of these models is done in Cheonsu Bay Summing up the results of this study are as follows; 1. It is found that the result for measurements of temperature appears high at southwardly Songdo on flood. The reason is that tidal currents which flowed north direction were accompanied with southwardly dispersed thermal discharge. A minute Particle of thermal Plume has a tendency to dispels inward Deacheon Bay. 2. According to the results of numerical experiment, maximum distance for thermal discharge dispersion appeared 10.8 km at lower part and 8.6 km at upper part with power plant outlet as starting point. 3. Comparative the numerical simulation and Airbone Multispectral Scanner indicated that thermal discharge should be verified separative phenomena. The simulated results were compared with field data set showing good agreement. It is concluded that these model can be simulated well.

  • PDF

꼰 섬유 복합재료의 열전도도 예측모델 (Thermal Conductivity Model of Twisted Yarn Composites)

  • 변준형;이상관;김병선;박종규;이재열
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.95-98
    • /
    • 2003
  • In woven or knitted preforms for composites, the yams are often twisted for avoiding damage due to the contact with the textile machine elements. When the preforms of twisted yams are used in carbon/carbon composites, the thermal conductivity of the composites varies depending upon the degree of the yarn twist. This paper presents a thermal conductivity model of spun yarn composites. The thermal-electrical analogy and the averaging technique have been adopted in this analysis. The model prediction has been correlated with experimental results in order to confirm the model predictability. Parametric study has also been conducted to examine the effect of the yam twist on the thermal conductivity of spun yarn composites.

  • PDF

Medium Voltage HTS Cable Thermal Simulation using PSCAD/EMTDC

  • Jung, Chaekyun;Kang, Yeonwoog;Kang, Jiwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.145-150
    • /
    • 2015
  • This paper described the medium voltage high temperature superconducting cable thermal simulation and its application. New simulation method for HTS cable modeling using PSCAD/EMTDC is introduced in this paper. The developed simulation method consists of electrical model part and thermal model part. In electrical model part, power loss and thermal capacitance can be calculated in each layer, then the temperature of each layer can be calculated by power loss and thermal capacitance in thermal model part. This paper also analyzes the electrical and thermal characteristic in the case of normal operating condition and transient including single line to ground fault and line to line ground fault using new simulation method.