• 제목/요약/키워드: Thermal model

검색결과 4,386건 처리시간 0.029초

고정밀 공작기계주축계의 열특성 해석에 관한 연구 (A Study on the Thermal Characteristics of a High Precision Machine Tool Spindle)

  • 김용길
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.47-51
    • /
    • 1996
  • Unsteady-state temperature distributions and thermal deformations of a spindle system are studied in this paper. Three dimensional model is built for analysis, and the amount of heat generation of bearing and the thermal characteristic values including heat transfer coefficient are estimated. Temperature distributions and thermal deformations of a model are analyzed using the finite element method and the termal boundary values. Numerical results are compared with the measured data. The results show that thermal deformations and temperature distributions of a high precision spindle system can be reasonably estimated using the three dimensional model and the finite element method.

  • PDF

열성층 해석 난류모델 평가 (EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRATIFICATION)

  • 최석기;김세윤;김성오
    • 한국전산유체공학회지
    • /
    • 제10권4호통권31호
    • /
    • pp.12-17
    • /
    • 2005
  • A computational study of evaluation of current turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor. The turbulence models tested in the present study are the two-layer model, the shear stress transport (SST) model, the v2-f model and the elliptic blending mode(EBM). The performances of the turbulence models are evaluated by applying them to the thermal stratification experiment conducted at JNC (Japan Nuclear Corporation). The algebraic flux model is used for treating the turbulent heat flux for the two-layer model and the SST model, and there exist little differences between the two turbulence models in predicting the temporal variation of temperature. The v2-f model and the elliptic blending model better predict the steep gradient of temperature at the interface of thermal stratification, and the v2-f model and elliptic blending model predict properly the oscillation of the ensemble-averaged temperature. In general the overall performance of the elliptic blending model is better than the v2-f model in the prediction of the amplitude and frequency of the temperature oscillation.

내부 열용량을 고려한 수직 지중열교환기의 3차원 수치 모델 개발 (Development of a Three-Dimensional Numerical Model of the Vertical Ground-Coupled Heat Exchanger Considering the Effects of the Thermal Capacity)

  • 김의종
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.293-298
    • /
    • 2016
  • A three-dimensional (3D) numerical model of the vertical ground-coupled heat exchanger is useful for analyzing the modern ground source heat pump system. Furthermore, a detailed description of the inner side of the exchanger allows to account for the effects of the thermal capacity. Thus, both methods are included in the proposed numerical model. For the ground portion, a FDM (Finite Difference Method) scheme has been applied using the Cartesian coordinate system. Cylindrical grids are applied for the borehole portion, and the U-tube configuration is adjusted at the grid, keeping the area and distance unchanged. Two sub-models are numerically coupled at each time-step using an iterative method for convergence. The model is validated by a reference 3D model under a continuous heat injection case. The results from a periodic heat injection input show that the proposed thermal capacity model reacts more slowly to the changes, resulting in lower borehole wall temperatures, when compared with a thermal resistance model. This implies that thermal capacity effects may be important factors for system controls.

고온에서의 비선형 변형도를 고려한 콘크리트 구조물에서의 열응력 분포 (Thermal stress of concrete structure at high temperature considering inelastic thermal strain change)

  • 강석원;홍성걸;신영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1145-1150
    • /
    • 2000
  • Concrete behaves as ductile material at high temperature. The existing stress-strain relationship is not valid at high temperature condition. Thus, stress-strain curve of concrete at high temperature is re-established by modifying Saenz's suggestion in this study. A constitutive model of concrete subjected to elevated temperature is also suggested. The model consists of three components; free thermal stain, mechanical strain and thermal creep strain. As the temperature increase, the thermal creep becomes more critical to the failure of concrete. The thermal creep strain of concrete is derived from the modified power-law relation for the steady state creep. The proposed equation for thermal creep employs a Dorn's temperature compensated time theorem

  • PDF

다공성 단열재를 포함한 열방어구조의 열 특성 분석 (Thermal Characteristic Analysis of Thermal Protection System with Porous Insulation)

  • 황경민;김용하;이정진;박정선
    • 항공우주시스템공학회지
    • /
    • 제10권4호
    • /
    • pp.26-34
    • /
    • 2016
  • 본 논문에서는 다공성 단열재의 정확도가 높은 유효 열전도율 예측 모델을 새롭게 제안하고, 기존 예측 모델 및 시험 결과와 비교 검증하였다. 이를 위해 기존 유효 예측 모델들을 다공성 단열재의 고체 부피율에 따른 열전도율 시험 결과 값과 비교하였다. 그리고 고체의 부피율에 따른 유효 열전도율 시험결과와 비교하여 가장 높은 정확도를 가진 Zehner-Schlunder 모델 및 시험 결과 데이터를 기반으로 고체-유체의 부피율과 열전도율 비로 구성된 다항식을 추가하여, 새로운 유효 열전도율 예측 모델을 정의하였다. 예측 모델을 시험 결과와 비교하여 검증하였다. 또한 예측 모델을 적용하여 열방어구조의 과도 열전달 해석을 수행하였으며, 열전달 시험 결과와의 비교를 통해 유효 열전도율 예측 모델의 유효성을 확인하였다.

Darveaux 모델에 의한 플립칩 패키지 솔더 접합부의 열피로 해석 및 수명 평가 (The Thermal Fatigue Analysis and Life Evaluation of Solder Joint for Flip Chip Package using Darveaux Model)

  • 신영의;김연성;김종민;최명기
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.36-42
    • /
    • 2004
  • Experimental and numerical approaches on the thermal fatigue for the solder joint of flip chip package are discussed. However, it is one of the most difficult problems to choose the proper fatigue model. It was found that viscoplstic FE model with Darveaux method was very desirable and useful to predict the thermal fatigue life of solder joint for flip chip package under $208{\~}423K$ thermal cycling condition such as steep slope of temperature(JEDEC standard condition C). Thermal fatigue life was 1075 cycles as a result of viscoplatic model. It was a good agreement compared to the experimental. And also, it was found from the experimental that probability of the thermal fatigue life was $60{\%}$ at 1500 cycles.

히트 파이프가 장착된 정지궤도 위성 패널 열해석 프로그램 개발 (DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR HEAT PIPE INSTALLED PANEL OF GEOSTATIONARY SATELLITE)

  • 전형열;기정훈;한조영;채종원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.416-421
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat dissipation of electronics units and utilize several heat pipe networks to control the temperatures of units and the satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary design stage so several thousands of nodes of more are utilized in order to perform thermal analysis of panel. Generating a large number of nodes(meshes) of the panel takes time and is tedious work because the mesh can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required in order to generate detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of panel thermal analysis program with ist main modules and its main functions.

  • PDF

정지궤도위성 위성체패널 열해석 프로그램 개발 (DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR GEOSTATIONARY SATELLITE PANEL)

  • 전형열;김정훈;한조영;채종원
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.66-72
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat and utilize several heat pipe networks to control the temperatures of units and the main structures of satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary satellite design stage, so several thousands of nodes or more are utilized in order to perform detailed thermal analysis of panel. Generating a large number of panel nodes takes time and is tedious work because the nodes can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required to generate a detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of the panel thermal analysis program with its main modules and functions.

1차원 모델에 의한 지중열교환기의 열거동 해석 (A Study on the Thermal Behavior of Vertical Borehole Heat Exchanger with 1-Dimensional Model)

  • 이세균;김대기;우정선;박상일
    • 한국태양에너지학회 논문집
    • /
    • 제25권1호
    • /
    • pp.97-104
    • /
    • 2005
  • A one-dimensional heat transfer model for the vertical borehole system is derived in this study to predict the thermal behavior of the system and surrounding soil. In this model the U-tube is replaced with one effective tube of effective diameter which is surrounded by concentric grout region. All thermal resistances of borehole are counted in the grout region with effective thermal conductivity of grout. Effective thermal conductivity of grout and sand are calculated through parameter estimation. The validity of this model is accomplished through comparison of the predicted temperature profiles of the model with experimental data.

Thermal Striping 해석 난류모델 평가 (EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING)

  • 최석기;김세윤;김성오
    • 한국전산유체공학회지
    • /
    • 제10권4호통권31호
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.