• Title/Summary/Keyword: Thermal mixing

Search Result 794, Processing Time 0.024 seconds

Synthesis and Properties of Polyurethane/Clay Nanocomposites Containing Siloxane Segment (실록산 세그먼트를 가진 폴리우레탄/점토 나노복합체의 제조 및 물성에 관한 연구)

  • Lee Jung Eun;Kim Hyung Joong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.177-182
    • /
    • 2005
  • Montmorillonite (MMT) modified with siloxane diamine was reacted with a reactant obtained from 4,4'-diphenyl methane diisocyanate (MDI) and polyester type polyol, $Nippollan4010(\bar{M}_n2000)$. Finally, polyurethane (PU)/MMT composites were prepared by using 1,4-butane diol as a chain extender in $25\;wt\%$ solution of N,N-dimethyl acetamide (DMAc). It was expected that these nanocomposites had superior exfoliation property to that of MMT dispersed polyurethanes produced by simple mixing due to insertion of siloxane main chain to the silicate interlayer of MMT. Extent of reaction and formation of final products were analysed by using FT-IR spectroscopy. Dispersion into the PU and intercalation of MMT were identified by applying X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile data were acquired by universal test machine (UTM). Thermal stability and variation of surface energy were characterized by thermal gravimetric analysis (TGA) method and measurement of contact angle on the synthesized composites, respectively. As the results the organo-MMT modified with siloxane diamine in the PU composites has an intercalated structure relatively well-expanded rather than a completely exfoliated structure. The tensile strengths and the moduli for the PU/organo-MMT composites were drastically enhanced in comparison to those of $PU/Na^+-MMT$ composites.

Hot Fire Tests of the KSR-III Sub.(I) Engines (KSR-III 축소형(I) 엔진의 연소 시험)

  • Kim, Y.H.;Kim, Y.W.;Moon, I.Y.;Ko, Y.S.;Lee, S.Y.;Ryu, C.S.;Seol, W.S.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.120-125
    • /
    • 2002
  • In the preceding tests using the KSR-III Sub.(I) engines, it was observed that the heat resistant capability of the engines was not enough for the mission. So Sub.(I) Mod. engines were designed and tested. The Sub.(I) Mod. engines have three major design parameters - the arrangement of main injectors, the impinging angle of main injectors and thermal barrier coating. More than twenty experiments were carried on to evaluate engine performance and heat resistance capability with respect to design parameters. In this study, the test results are introduced. Analysing the result of Sub.(I) engine tests, it is found that decreasing the impinging angle, adopting the H-type arrangement(rather than radial type arrangement) and adopting the thermal barrier coating can increase heat resistance capacity substantially. Also, engine performance evaluation is conducted using specific impulse and characteristic velocity parameter. The results show that the performance variation is small(about 5%) and the performance is better in the case of radial arrangement. It is suspected that these phenomena are caused by the change of flame structure atomization mixing characteristic of sprays and the distortion of recirculation zone. Also from the low frequency instability point of view, it is observed that reducing the impinging angle and adopting the H type arrangement can increase the instability characteristics.

A Study on the RDF making Process of Heat-dried Sludge from Cheonan by using Oil-drying Method (유중건조를 이용한 천안시 열건조물의 고형연료화 공정 연구)

  • Park, So-yeon;Kim, Sang-bin;Ha, Jin-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.660-667
    • /
    • 2018
  • This study examined the optimal manufacturing conditions of RDF using heat-dried sludge from sewage treatment plant in Cheonan with the oil-drying method. The amounts of oil evaporation and oil drying of the heat-dried sludge were measured at different temperatures to evaluate the value of the product. The performance of the product was then measured using a calorimeter and TGA. In addition, the concentration of odor, NH3, H2S, and TVOC during drying was determined using a portable odor-meter. Ingredient analysis was performed by EDS. Considering mass-production, the oil to heat-dried sludge weight ratio was fixed to 4:1. At $130^{\circ}C$, only physical mixing occurred after the instantaneous drying of internal water. Considering the eco-friendly aspects, there was no significant difference in the drying efficiency between $160^{\circ}C$ and $190^{\circ}C$. Therefore, the optimal conditions were a drying temperature of $160^{\circ}C$ within 5 minutes. Finally, the RDF manufactured in this study and fuel used in the thermal power plants were compared. The calorific value was 4,449kcal/kg, the water content was 2% and the ash content was 34%, which is higher than the fuel of thermal power plants. Therefore, it is believed that coal energy as well as wood pellets can be replaced.

A Study on Improvement of Fire-resistant and Flame-retardant Properties of Silicone Rubber Composites Containing Perlite (펄라이트를 첨가한 실리콘 고무 복합체의 내화 및 난연 특성 향상에 관한 연구)

  • Lee, Byung-Gab;Lee, Jong-Hyeok;Bang, Dae-Suk;Won, Jong-Pil;Jang, Il-Young;Park, Woo-Young;Jhee, Kwang-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.164-170
    • /
    • 2011
  • In this study, silicone rubber filled with environmentally-friendly perlite was prepared by mechanical mixing in order to improve thermal properties, such as heat and fire resistances. We found that the properties of silicone rubber composites depended on perlite concentration by various characterization methods. Thermogravimetric analysis(TGA) indicated that the initial degradation temperature of silicone/perlite composite was higher than that of pristine silicone rubber. The gas torch test showed that the opposite side temperature of composite materials was remarkably low as compared to that of pristine silicone rubber. In addition, the composites containing 5 wt% and 10 wt% of perlite showed remarkable thermal stability at elevated temperatures according to the results of both fireproof furnace tests under the RABT condition and carbonization furnace tests. The images from a scanning electron microscope(SEM) showed the degree of dispersion of perlite in silicone rubber. Finally, it was confirmed that limited oxygen index(LOI) was increased with perlite concentration.

Numerical Simulations of Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames (대향류 확산화염에서 맥동 불안정성의 비선형 거동에 대한 수치해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.859-866
    • /
    • 2010
  • Nonlinear dynamics of pulsating instability-diffusional-thermal instability with Lewis numbers sufficiently higher than unity-in counterflow diffusion flames, is numerically investigated by imposing a Damkohler number perturbation. The flame evolution exhibits three types of nonlinear behaviors, namely, decaying pulsating behavior, diverging behavior (which leads to extinction), and stable limit-cycle behavior. The stable limit-cycle behavior is observed in counterflow diffusion flames, but not in diffusion flames with a stagnant mixing layer. The critical value of the perturbed Damkohler number, which indicates the region where the three different flame behaviors can be observed, is obtained. A stable simple limit cycle, in which two supercritical Hopf bifurcations exist, is found in a narrow range of Damkohler numbers. As the flame temperature is increased, the stable simple limit cycle disappears and an unstable limit cycle corresponding to subcritical Hopf bifurcation appears. The period-doubling bifurcation is found to occur in a certain range of Damkohler numbers and temperatures, which leads to extend the lower boundary of supercritical Hopf bifurcation.

Geochronology and Cooling history of the Mesozoic Granite Plutons in the Central Part of the Ogcheon Fold Belt, South Korea (남한 습곡대 중앙부의 중생대 화강암 질암의 생선년대와 냉각사)

  • Myung-Shik JIN
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.153-167
    • /
    • 1995
  • Emplacement ages for the granite plutons of the Jurassic and the Cretaceous times in the central Ogcheom Fold Belt were determined by Rb-Sr whole rock and mineral isocheon methods. In addition mineral ages for the plutons were determined by K-Ar and fission track methods. In turn, thermal histories and uplifting rates of the granitic bodies are elucidated from the isotopic ages. The Jecheon(~203 Ma) and Mungyeong(at lest~200 Ma) granites of the Jurassic and the Muamsa, Wolagsan and Daeyasan granites(~110 Ma) of the Cretaceous show high strontium initial ratios [$(^{87}Sr/^{86}Sr)_1$0.7100],suggesting that the granitic magmas have been generated by partial melting of crustal materials (S-type), or by mixing of mantle and crustal materials. Only mineral ages of the Sogrisan and Hyeongjebong granites (~90 Ma) were determined by K-Ar method, and petrogenesis of them were not defined yet. The two Jurassic granite plutons were cooled rapidly down to $300^{\circ}C$, right after the plutons were slowly cooled down since then, due to their deep emplacment. During the Middle Cretaceous period, the Jurassic Mungyeong granitic pluton was intruded and thermally affected much by the surrounding Wolagsan and Daeyasan granites. Accordingly the Rb-Sr mineral age, K-Ar hornblende and biotite ages of the Mungyeong granite appear to be reduced or reset due to the thermal effects above their blocking temperatures. All the cretaceous granites have been cooled much ore simply and rapidly down than the Jurassic ones below $300^{\circ}C$, owing to their shallow emplacement.

  • PDF

The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of Raw Material Resin to Produce Fuel-Oil from Waste Vinyl (폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해 반응에서 제올라이트계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Cho, Tae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.303-309
    • /
    • 2009
  • The effects of zeolite type catalysts addition on the thermal decomposition of low density polyethylene(LDPE) and ethylene vinyl acetate(EVA) resin have been studied in a thermal analyzer(TGA, DSC) and a small batch reactor. The zeolite type catalysts tested were natural zeolite, FCC catalyst, used FCC catalyst, and catalyst A. As the results of TGA experiments, addition of antifogging-agent decreased the pyrolysis point to $250^{\circ}C$, but addition of longevity-agent and clay reduced the pyrolysis rate in EVA resin. Addition of the zeolite type catalysts in the LDPE resin increased the pyrolysis rate in the order of catalyst A > used FCC catalyst > natural zeolite > LDPE resin. Addition of the zeolite type catalysts in the EVA resin increased the pyrolysis rate in the order of used FCC catalyst > natural zeolite > catalyst A > EVA resin. In the DSC experiments for LDPE resin, addition of zeolite type catalysts decreased the melting point and the heat of pyrolysis reaction in the order of catalyst A > used FCC catalyst > natural zeolite> LDPE resin. In the batch system experiments, the mixing of natural zeolite enhanced the yield of liquid fuel oil.

Heat Storage Material by Using Phase Change Materials to Control Buildings Thermal Environment Characteristics (건축물 열환경 특성제어를 위한 상변화 축열재)

  • Yun, Huy-Kwan;Han, Seong-Kuk;Shim, Myeong-Jin;Ahn, Dae-Hyun;Lee, Woong-Mok;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.522-526
    • /
    • 2010
  • Heat storage application techniques can be categorized into the sensible heat storage and the latent heat storage according to the method of heat storage. Heat storage is the way of saving remaining heat when heating and cooling loads are light, and then using it when the heating and cooling loads are heavy. Latent heat storage is defined as the method of saving heat by using substances which have high potential heat when phase change is in the range of a certain temperature and when heat storage space is small, compared to those of sensible heat storage and it is possible that absorption and emission of heat at a certain temperature. This study is conducted to save energy when either air-conditioning or heating is operated in a building. We have tried to find out the essential properties of matter and the optimum mixing rate about cement and gypsum for building materials, which have been widely used for proper phase change materials (PCM), when thermal environment property is applied. So we obtained the result of the cooling delay effect about 19% with heat storage mortar containing 3 wt% of PCM.

Preparation and Physical Properties of Poly(ethylene-co-ethyl acrylate)/Carbon Nanotube Nanocomposites (폴리에틸렌에틸아크릴레이트/카본나노튜브 나노복합체의 제조 및 물성)

  • Kook, Jeong Ho;Jeong, Kwang-Un;Yang, Jong Seok;Park, Dae Hee;Go, Jin Hwan;Nah, Changwoon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • Multi-walled carbon nanotubes (MWCNT)-reinforced poly(ethylene-co-ethyl acrylate) (EEA) nanocomposites were prepared by both melt and solution mixing methods. The mechanical, thermal, and electrical properties were investigated as a function of type and loading of CNT. The tensile strength and modulus increased, while elongation at break decreased with increasing MWCNT content. The hollow-type MWCNT showed an improved tensile strength and elongation at break compared with a conventional MWCNT. The thermal degradation temperature was increased by around $40^{\circ}C$ with increasing the amount of MWCNT. The melt-mixed composites showed the highest volume resistivity. In the case of solution-mixed composites, the conventional MWCNT was estimated to show much lower volume resistivity than that of hollow MWCNT. The number and length of extruded CNT onto the fractured surface increased by both increasing the content of CNT and employing the tensile strain to the sample. The melt-mixed specimens showed much smaller number and shorter length of extruded CNT.

Solar Energy Storage Effectiveness on Double Layered Single Span Plastic Greenhouse (2중 단동비닐하우스의 태양열 축열이용 효과)

  • Lee, Sung-Hyoun;Ryou, Young-Sun;Moon, Jong-Pil;Yun, Nam-Kyu;Kwon, Jin-Kyung;Lee, Su-Jang;Kim, Kyeong-Won
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • This study was carried out in order to reduce the amount of underground water which is used in the double layered single span plastic greenhouse for retaining heat. For this research, two plastic green houses of the double layered single span plastic greenhouse were installed. There was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50 cm in diameter filled with subsurface water. The surplus solar energy in the greenhouse was stored in the water in the PVC duct. Four FCUs (Fan Coil Unit), which has the capacity of 8,000 kcal per hour, were installed in the middle of the house, and a circulation motor in heat storage water tank was operated from 10:30 a.m. to 16:00 p.m. in order to circulate water between the water tank and the FCUs. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of lower than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. To prevent the water freezing, mixing antifreezing liquid in the water or operating FCU continuously was needed. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Considering the amount of water used in the house with water-curtain-heating system is 150~200 ton per day, using the system mentioned in this research showed that reducing the underground water more than 80% in order to maintain the internal temperature as the level of 5 degree celsius at the extreme temperature of minus 5 degrees celsius.