• Title/Summary/Keyword: Thermal media

Search Result 274, Processing Time 0.029 seconds

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling (열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.571-580
    • /
    • 2020
  • In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

Modeling of fractional magneto-thermoelasticity for a perfect conducting materials

  • Ezzat, M.A.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.707-731
    • /
    • 2016
  • A unified mathematical model of the equations of generalized magneto-thermoelasticty based on fractional derivative heat transfer for isotropic perfect conducting media is given. Some essential theorems on the linear coupled and generalized theories of thermoelasticity e.g., the Lord- Shulman (LS) theory, Green-Lindsay (GL) theory and the coupled theory (CTE) as well as dual-phase-lag (DPL) heat conduction law are established. Laplace transform techniques are used. The method of the matrix exponential which constitutes the basis of the state-space approach of modern theory is applied to the non-dimensional equations. The resulting formulation is applied to a variety of one-dimensional problems. The solutions to a thermal shock problem and to a problem of a layer media are obtained in the present of a transverse uniform magnetic field. According to the numerical results and its graphs, conclusion about the new model has been constructed. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

Nano Molding Technology for Optical Storage Media with Large-area Nano-pattern (대면적 광 정보저장매체의 나노성형에 대한 기술 개발)

  • Shin Hong-Gue;Ban Jun-Ho;Cho Ki-Chul;Kim Heon-Yong;Kim Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.162-167
    • /
    • 2006
  • Hot embossing lithography(HEL) has the production advantage of comparatively few process step, simple operation, a relatively low cost for embossing tools(Si), and high replication accuracy for small features. In this paper, we considered the nano-molding characteristic according to molding parameters(temperature, pressure, times, etc) and induced a optimal molding condition using HEL. High precision nano-patter master with various shapes were designed and manufactured using the DRIE(Deep Reactive ion Etching), LPCVD(Low Pressure Chemical Vapor Deposition) and thermal oxidation process, and we investigated the molding characteristic of DVD and Blu-ray nickel stamp. We induced flow behaviors of polymer, rheology by shapes and sizes of the pattern through various molding experiments. Finally, with achieving nano-structure molding with high aspect ratio, we will secure a basic technology about the molding of large-area nano-pattern media.

Influence of Aging Media and Filler System on Recovery Behaviors of Natural Rubber Composites (노화 매질과 충진 시스템이 천연고무 복합체의 회복 거동에 미치는 영향)

  • Choi, Sung-Seen;Kim, Ok-Bae
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.156-161
    • /
    • 2012
  • Difference in recovery behaviors from the circular deformation of natural rubber (NR) composites aged in air and distilled water, respectively were investigated. Recoveries of the samples aged in air were larger than those of the samples aged in distilled water. Recovery rates of the samples reinforced with filler were faster than those of the unreinforced ones. Recovery rates of the carbon black-filled samples were faster than those of the silica-filled ones. Difference in the recovery behaviors according to the aging media can be explained by the crosslinking density changes and the annealing effect.

A study on thermo-elastic interactions in 2D porous media with-without energy dissipation

  • Alzahrani, Faris;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.523-531
    • /
    • 2021
  • The generalized thermoelastic analysis problem of a two-dimension porous medium with and without energy dissipation are obtained in the context of Green-Naghdi's (GNIII) model. The exact solutions are presented to obtain the studying fields due to the pulse heat flux that decay exponentially in the surface of porous media. By using Laplace and Fourier transform with the eigenvalues scheme, the physical quantities are analytically presented. The surface is shocked by thermal (pulse heat flux problems) and applying the traction free on its outer surfaces (mechanical boundary) through transport (diffusion) process of temperature to observe the analytical complete expression of the main physical fields. The change in volume fraction field, the variations of the displacement components, temperature and the components of stress are graphically presented. Suitable discussion and conclusions are presented.

Effect of two-temperature in an orthotropic thermoelastic media with fractional order heat transfer

  • Lata, Parveen;Himanshi, Himanshi
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.241-262
    • /
    • 2021
  • In this article, we studied the effect of two-temperature in a two-dimensional orthotropic thermoelastic media with fractional order heat transfer in generalized thermoelasticity with three-phase-lags due to thermomechanical sources. The boundary of the surface is subjected to linearly distributed and concentrated loads (mechanical and thermal source). The solution of the problem is obtained with the help of Laplace and Fourier transform techniques. The expressions for displacement components, stress components and conductive temperature are derived in transformed domain. Numerical inversion technique is used to obtain the results in physical domain. The effect of two-temperature on all the physical quantities has been depicted with the help graphs. Some special cases are also discussed in the present investigation.

Rayleigh waves in orthotropic magneto-thermoelastic media under three GN-theories

  • Parveen Lata;Himanshi
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.211-226
    • /
    • 2023
  • The present work is considered to study the two-dimensional problem in an orthotropic magneto-thermoelastic media and examined the effect of thermal phase-lags and GN-theories on Rayleigh waves in the light of fractional order theory with combined effect of rotation and hall current. The boundary conditions are used to derive the secular equations of Rayleigh waves. The wave properties such as phase velocity, attenuation coefficient are computed numerically. The numerical simulated results are presented graphically to show the effect of phase-lags and GN-theories on the Rayleigh wave phase velocity, attenuation coefficient, stress components and temperature change. Some particular cases are also discussed in the present investigation.

A Modified Turbulent Porous Modeling for Numerical Analysis (수치해석을 위한 변형된 난류 다공성 모델링)

  • Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.875-882
    • /
    • 2002
  • The modeling for turbulent flow through a porous media has not been confirmed because of a undetermined constant which appears in the governing equations. In present study, the turbulent porous modeling based on the local thermal equilibrium has been extended to the turbulent clear flow. A undetermined constant is also suggested by microscopic analysis. The microscopic analysis is performed in the flat tube with micro-channels, and it confirms that the undetermined constant is 0.99. It is shown that the results of the macroscopic analysis using confirmed constant agree well with those of the microscopic analysis with a maximum error of 3.5%.

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER (Arcjet Thruster 유동의 전산해석)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF