• Title/Summary/Keyword: Thermal media

Search Result 274, Processing Time 0.029 seconds

The thermal analysis of te-based media for the optical recording (광기록에 이용되는 Te-based media에 대한 열적 해석)

  • 이성준;천석표;이현용;정홍배
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 1995
  • We discussed the thermal analysis for a recording media with the variation of the laser pulse duration, the laser power and the temperature distribution in order to optimize the Te-based antireflection structure from the computer calculations. In the case that the radial heat diffusion is negligible, we can calculate the maximum temperature of the recording layer at the center of the spot by the Simple Model. The temperature profile of the recording layer is obtained from the Numerical Model by considering the total specific heat and the latent heat. As a result, the effect of the heat sinking acting as a thermal loss for the hole formation could be minimized by introducing the pulse with the hole formation duration(.tau.) below the thermal time constant(.tau.$_{D}$) of a dielectric layer. These requirments can be satisfied by using the dielectric thickness of the 2nd ART(Anti-Reflection Trilayer) condition or the dielectric materials with a low thermal diffusivity.y.

  • PDF

Study on Heat Storage and Transportation System for Recovering Non-using Low-temperature Heat (폐열회수 증대를 위한 열운송 축열 시스템 특성 연구)

  • Oh, Changyong;Im, Hongseop;Kim, Insu
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.29-35
    • /
    • 2014
  • Non-used waste heat has recently been paid special attention due to several global warming regulation and energy cost rising. In this study, therefore, thermal energy storage system which uses a solid type heat media has been investigated about the possibility of heat accumulation and heat release for thermal energy storage system. 35kWh of bench-scale thermal storage system was used to investigate the characteristics of the solid type heat media. From the result, it is shown that a solid type heat media should be divided to supply constant heat to the customers' side. It is also shown the flow direction should be considered to reduce temperature difference between top and bottom sides in the thermal storage system.

Measurement of the Effective Thermal Conductivity of Porous Media in the Mockup Apparatus of Reactor Vessel (원자로 모의 다공질 매체의 유효 열전달 계수 측정)

  • 김용균;황종선;이용범;최석기;남호윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.447-450
    • /
    • 1997
  • Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of Al powder porous media where stainless steel tubes were installed with different geometry. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method.

  • PDF

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.

Thermal response of porous media cooled by a forced convective flow (강제대류에 의해 냉각되는 다공물질의 열응답 특성)

  • 백진욱;강병하;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.600-609
    • /
    • 1998
  • The experimental investigation of thermal response characteristics by the air flow through the porous media has been carried out. The packed spheres of steel or glass were considered as the porous media in the present study. Temperature distributions of the fluid in the porous media as well as pressure drops through the porous media were measured. The transient temperature variations in the porous media are compared favorably with the analytical results in the high Reynolds number ranges. However, in the low Reynolds number ranges, the experimental data deviate from the analytical results, due to the dominant heat conduction penetration to the upstream direction, which is not considered in the analytical model. The cool-down response of porous media is found to be dependent upon the specific dimensionless time considering the material property and air velocity. The heat discharge process is recommended to be operated until a certain time, considering the cost efficiency.

  • PDF

Review on Thermal Storage Media for Cavern Thermal Energy Storage (지하공동 열에너지 저장을 위한 축열 매질의 기술 현황 검토)

  • Park, Jung-Wook;Park, Do-Hyun;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.243-256
    • /
    • 2012
  • Developing efficient and reliable energy storage system is as important as exploring new energy resources. Energy storage system can balance the periodic and quantitative mismatch between energy supply and energy demand and increase the energy efficiency. Industrial waster heat and renewable energy such as solar energy can be stored by the thermal energy storage (TES) system at high and low temperatures. TES system using underground rock carven is considered as an attractive alternative for large-scale storage, because of low thermal conductivity and chemical safety of surrounding rock mass. In this report, the development of available thermal energy storage methods and the characteristics of storage media were introduced. Based on some successful applications of cavern storage and high-temperature storage reported in the literature, the applicabilities and practicabilities of storage media and technologies for large-scale cavern thermal energy storage (CTES) were reviewed.

Masked Face Temperature Measurement System Using Deep Learning (딥러닝을 활용한 마스크 착용 얼굴 체온 측정 시스템)

  • Lee, Min Jeong;Kim, Yoo Mi;Lim, Yang Mi
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.208-214
    • /
    • 2021
  • Since face masks in public were mandated during COVID-19, more people have taken temperature checks, with their masks on. The study has developed a contactless thermal camera that accurately measures temperatures of people wearing different kinds of masks, detect people wearing masks wrong, and record the temperature data. The built-in system that identifies people wearing masks wrong is what masks our contactless thermal camera differentiated from other thermal cameras. Also our contactless thermal camera can keep track of the number of mask wearers in different regions and their temperatures. Thus, the analysis of such regional data can significantly contribute to stemming the spread of the virus.

Development of an Irradiation Device for High Temperature Materials in HANARO (하나로에서의 고온재료 조사장치 개발)

  • Cho, Man Soon;Choo, Kee Nam
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.145-153
    • /
    • 2011
  • The irradiation tests of materials in HANARO have been performed usually at temperatures below $300^{\circ}C$ at which the RPV(Reactor Pressure Vessel) materials of the commercial reactors such as the light water reactor and CANDU are operated. As VHTR(Very High Temperature Reactor) and SFR(Sodium-cooled Fast Reactor) projects are being carried as a part of the present Gen-IV program in Korea, the requirements for irradiation of materials at temperatures higher than $500^{\circ}C$ are recently being gradually increased. To overcome the restriction in the use at high temperature of the existing Al thermal media, a new capsule with double thermal media composed of two kinds of materials such as Al-Ti and Al-graphite was designed and fabricated more advanced than the single thermal media capsule. At the irradiation test of the capsule, the temperature of the specimens successfully reached $700^{\circ}C$ and the integrity of Al, Ti and graphite material was maintained.

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

A Numerical Study on a Prediction of Performance of the Metal Hydride Thermal Conversion System through the Propagation Phenomena of Superadiabatic Thermal Waves (초단열 열파동의 전파현상을 활용하는 수소저장합금 열변환 시스템의 성능예측을 위한 수치해석적 연구)

  • Kim, Gyu-Jeong;Kim, Gwan-Yeong;Chae, Jae-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.572-582
    • /
    • 2001
  • A method of metal-hydride thermal conversion that is an alternative to the traditional method is proposed and investigated. The unit heat pump consists of reactors of two different metal-hydrides are distributed inside parallel channels filled with porous media. The channels are blown through with a heat-transfer agent. Thermal conversion develops as a set of successive heat waves. By a numerical-modeling method it is shown that the maximum thermal effect is attained in synchronous motion of the heat wave and the heat source (or sink) that accompanies the phase transition in the succession of unit metal-hydride pumps. The results are presented in a form convenient for prediction of the thermal and energy efficiency of the proposed thermal-conversion method in real devices.