DOI QR코드

DOI QR Code

A Numerical Study on a Prediction of Performance of the Metal Hydride Thermal Conversion System through the Propagation Phenomena of Superadiabatic Thermal Waves

초단열 열파동의 전파현상을 활용하는 수소저장합금 열변환 시스템의 성능예측을 위한 수치해석적 연구

  • Published : 2001.04.01

Abstract

A method of metal-hydride thermal conversion that is an alternative to the traditional method is proposed and investigated. The unit heat pump consists of reactors of two different metal-hydrides are distributed inside parallel channels filled with porous media. The channels are blown through with a heat-transfer agent. Thermal conversion develops as a set of successive heat waves. By a numerical-modeling method it is shown that the maximum thermal effect is attained in synchronous motion of the heat wave and the heat source (or sink) that accompanies the phase transition in the succession of unit metal-hydride pumps. The results are presented in a form convenient for prediction of the thermal and energy efficiency of the proposed thermal-conversion method in real devices.

Keywords

References

  1. 양윤섭, 1993, '고체-수착 열펌프 시스템에 관한 개발동향,' 공기조화 냉동공학 제22권, 제2호, p. 116
  2. Lynch E. Frank, 1991, 'Metal Hydride Practical Applications,' Journal of the Less-Common Metals, Vol. 172-174, pp. 945-958 https://doi.org/10.1016/S0022-5088(06)80001-9
  3. 'Heat Pumps in Japan,' 1988, Heat Pumps Technology Center of Japan, pp. 168-174, Tokyo
  4. Fateev, G.A., Rabinovich, O.S., 1997, 'Metal Hydride Heat Conversion on the Basis of Superadiabatic Combustion Waves in Porous Media,' International Journal of Hydrogen Energy, Vol. 22, pp. 915-924 https://doi.org/10.1016/S0360-3199(96)00237-6
  5. Kim, K.J., 1998, 'Propagation of Waves of Metal-Hydride Thermal Conversion in Blown-Through Porous Media,' Journal of Engineering Physics and Thermophysics, Vol. 71, No. 1, Consultants Bureau, New York https://doi.org/10.1007/BF02682493
  6. Fateev, G.A., Silenkov, M.A., Kim, K.J., 2000, 'Experimental Study of Propagation of Waves of Energy conversion in Blown-Through Porous Media,' Journal of engineering Physics and Thermphysics, Vol. 73, No. 5, Consultants Bureau, New York https://doi.org/10.1007/BF02681602
  7. Orgaz, E., Danzer, P., 1987, 'Thermodynamics of the Hydride Chemical Heat Pump: Ⅲ Consideration for Multistage Operation,' Journal of the Less-Common Metals, Vol. 131, pp. 385-398 https://doi.org/10.1016/0022-5088(87)90538-8
  8. Domschke, M., Nietsch, T., Schutt, E., 1991, 'The Temperature-Dependence of Hydrogen Sorption in Metal Hydride,' International Journal of Hydrogen Energy, Vol. 16, pp. 255-265 https://doi.org/10.1016/0360-3199(91)90018-E
  9. Babkin, V.S., Korzhavin, A.A., Bunev, V.A., 1991, 'Propagation of Premixed Gaseous Explosion Flames in Porous Media,' Combustion and Flame, Vol. 87, pp. 182-190 https://doi.org/10.1016/0010-2180(91)90168-B
  10. Kiselev, O.V., Matros, Y.S., Chumakova, N.A., 1988, 'Phenomenon of Thermal Front Propagation in a Catalytic Layer,' Propagation of Thermal Waves in Heterogeneous Media, Nauka, Novosibirsk, pp. 145-203 (in Russian)
  11. Ron, M., 'A Hydrogen Heat Pump as a Bus Air Conditioner,' 1984, Journal of the Less-Common Metals, Vol. 104, pp. 259-278 https://doi.org/10.1016/0022-5088(84)90411-9
  12. Bernauer, O., Ziegler, K., 1994, U.S. Patent 4, 507, 891, July 3
  13. Kang, B.H., Park, C.W., Lee, C.S., 1996, 'Dynamic Behavior of Heat and Hydrogen Transfer in a Metal Hydride Cooling System,' Int. J. Hydrogen Energy, Vol. 21, No. 9, pp. 769-774 https://doi.org/10.1016/0360-3199(96)00017-1