• Title/Summary/Keyword: Thermal mechanism

Search Result 1,228, Processing Time 0.028 seconds

Plugging and Re-opening Phenomena of the 5Cr-1Mo Steel Leak Hole by Water Leakage in Sodium Atmosphere (소듐 분위기에서 물누출에 의한 5Cr-1Mo Ferrite강 구멍의 막힘과 재개방 현상)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyeun;Park, Jin-Ho;Hwang, Sung-Tai
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.674-679
    • /
    • 1998
  • Small water leak experiment was carried out in liquid sodium atmosphere using a specimen of ferrite steel, which will be expected to be a material of the heat transfer tube of liquid metal fast breeder reactor. Self-plugging phenomena of leak path could be explained by the products of reaction and corrosion by sodium-water reaction. Also, re-opening mechanism of self-plugged path could be explained by the thermal transient and vibration of heat transfer tube. As a result, perfect re-opening time of self-plugged leak path was observed to be 129 minutes after water leak initiation. Re-opening shape of a specimen was appeared with double layer of circular type, and re-opening size of this specimen surface was about 2 mm diameter on sodium side.

  • PDF

A Study on the Comparison of Explosive Lower Limit Concentration & Thermal Specific of Wheat Powder Dust & Salicylic Acid Dust (밀가루분진 및 살리실산분진의 폭발하한농도 및 열적특성 비교에 관한 연구)

  • Ko, Jae-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • We have examined In order to compare each other from explosion and combustion characteristics about the dusts which collects from manufacturing process of wheat flour and cosmetics manufacturing process of functional Keratin removal soap at the small and medium enterprise style. We measured explosive pressure and explosive lower limit which follows in change of concentration change at the time of talc addition uses Hartman dust explosion apparatus, also measured weight loss and endothermic quantity uses DSC and TGA. The explosion test results show that increased explosive lower limit concentration and explosive pressure decreased by the increased ratio of the talc dust. And the DSC results show that heat flux and temperature decreased by the increased ratio of the talc dust. Also increased in raising temperature causes initial smoldering temperature to move towards low temperature section and the endothermic quantity increased on a large scale. Together the TGA results show that weight loss decreased by the increased ratio of the talc dust. From this research we have assured the successive dust explosion mechanism study will play a key role as a significant safety securing guideline against the dust explosion.

Corrosion Behavior of As-Cast and Solution-Treated AZ91-4%RE Magnesium Alloy (주조 상태 및 용체화처리한 AZ91-4%RE 마그네슘 합금의 부식 거동)

  • Han, Jin-Gu;Hyun, Soong-Keun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.5
    • /
    • pp.220-230
    • /
    • 2018
  • The objective of this study is to investigate the effect of solution treatment on the microstructure and corrosion behavior of cast AZ91-4%RE magnesium alloy. In the as-cast state, microstructure of the AZ91-4%RE alloy was characterized by intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_{11}RE_3$ and $Al_2RE$ phase particles distributed in ${\alpha}-(Mg)$ matrix. After solution treatment, the ${\beta}$ particles with low melting point dissolved into the matrix, but Al-RE phases still remained due to their high thermal stabilities. It was found from the immersion and potentiodynamic polarization tests that corrosion rate of the AZ91-4%RE alloy increased after the solution treatment. On the contrary, EIS tests and EDS compositional analyses on the surface corrosion products indicated that the stability of the corrosion product was improved after the solution treatment. Examinations on the corroded microstructures for the ascast and solution-treated samples revealed that dissolution of the ${\beta}$ particles which play a beneficial role in suppressing corrosion propagation, would be responsible for the deterioration of corrosion resistance after the solution treatment. This result implies that the microstructural features such as amount, size and distribution of secondary phases that determine corrosion mechanism, are more influential on the corrosion rate in comparison with the stability of surface corrosion product.

Syntheses of Alternating Head-to Head Vinyl Copolymers and Vinyl Terpolymers via Ring-Opening Mechanism. Ring-Opening Polymerization of Substituted-3,4-dihydro-2H-pyrans

  • Lee, Ju-Yeon;Cho, I-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.96-101
    • /
    • 1987
  • 2-Ethoxy-6-methoxy-5-cyano-3,4-dihydro-2H-pyran (1_a$), 2-n-butoxy-6-methoxy-5-cyano-3,4-dihydro-2H-pyr an (1b), 2-isobutoxy-6-methoxy-5-cyano-3,4-dihydro-2H-py ran ($1_c$), and 2-ethoxy-6-methoxy-3-methyl-5-cyano-3,4-dihydro -2H-pyran ($1_d$) were prepared by (4 + 2) cycloaddition reaction of methyl $\alpha$-cyanoacrylate with the corresponding alkyl vinyl ethers. Compounds $1_{a-d}$ were ring-open polymerized by cationic catalyst to obtain alternating head-to-head (H-H) copolymers. For comparison, head-to-tail (H-T) copolymer $3_a$ was also prepared by free radical copolymerization of the corresponding monomers. The H-H copolymer exhibited minor differences in its $1_H% NMR and IR spectra, but in the $^{13}C$ NMR spectra significant differences were observed between the H-H and H-T copolymers. Glass transition temperature ($T_g$) of H-H copolymer was higher than that of the H-T copolymer, but thermal decomposition temperature of the H-H copolymer was lower than that of the H-T copolymer. Compounds $1_a$, $a_b$, and $1_c$, copolymerized well with styrene by cationic catalyst, but compound 1d failed to copolymerize with styrene. All of the H-H and H-T copolymers were soluble in common solvents and the inherent viscosities were in the range 0.2-0.4 dl/g.

Effect of Intermetallic Compounds Growth Characteristics on the Shear Strength of Cu pillar/Sn-3.5Ag Microbump for a 3-D Stacked IC Package (3차원 칩 적층을 위한 Cu pillar/Sn-3.5Ag 미세범프 접합부의 금속간화합물 성장거동에 따른 전단강도 평가)

  • Kwak, Byung-Hyun;Jeong, Myeong-Hyeok;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.775-783
    • /
    • 2012
  • The effect of thermal annealing on the in-situ growth characteristics of intermetallics (IMCs) and the mechanical strength of Cu pillar/Sn-3.5Ag microbumps are systematically investigated. The $Cu_6Sn_5$ phase formed at the Cu/solder interface right after bonding and grew with increased annealing time, while the $Cu_3Sn$ phase formed at the $Cu/Cu_6Sn_5$ interface and grew with increased annealing time. IMC growth followed a linear relationship with the square root of the annealing time due to a diffusion-controlled mechanism. The shear strength measured by the die shear test monotonically increased with annealing time. It then changed the slope with further annealing, which correlated with the change in fracture modes from ductile to brittle at a critical transition time. This is ascribed not only to the increasing thickness of brittle IMCs but also to the decreasing thickness of the solder, as there exists a critical annealing time for a fracture mode transition in our thin solder-capped Cu pillar microbump structures.

Study on the Development of CVD Precursors I-Synthesis and Properties of New Titanium β-Diketonates

  • 홍성택;임종태;이중철;Ming Xue;이익모
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.637-642
    • /
    • 1996
  • Preparation and properties of potential CVD (Chemical Vapor Deposition) precursors for the TiO2, a major component of the perovskite materials such as PT, PLT, PZT, and PLZT were investigated. Reactions between β-diketones and TiMe3, formed in situ failed to produce stable Ti(β-diketonate)3 complexes but a stable purple solid, characterized as (OTi(BPP)2)2 (BPP=1,3-biphenyl-1,3-propanedione) was obtained when BPP was used. Several new Ti(Oi-Pr)2(β-diketonate)2 complexes with aromatic or ring substituents were synthesized by the substitution reaction of Ti(OiPr)4by β-diketones and characterized with 1H NMR, IR, ICP, and TGA. Solid complexes such as Ti(Oi-Pr)2(BAC)2 (BAC=1.-phenyl-2,4-pentanedione), Ti(Oi-Pr)2(BPP)2, Ti(Oi-Pr)2(1-HAN)2 (1-HAN=2-hydroxy-1-acetonaphthone), Ti(Oi-Pr)2(2-HAN)2 (2-HAN=1-hydroxy-2-acetonaphthone), Ti(Oi-Pr)2(ACCP)2 (ACCP=2-acetylcyclopentanone), and Ti(Oi-Pr)2(HBP)2 (HBP=2-hydroxybenzophenone) were found to be stable toward moisture and air. Ti(Oi-Pr)2(ACCP)2 and Ti(Oi-Pr)2(HBP)2 were proved to have lower melting points and higher decomposition temperatures. However, these complexes are thermally stable and pyrolysis under an inert atmosphere resulted in incomplete decomposition. Ti(Oi-Pr)2(DPM)2 (DPM=dipivaloylmethane) and Ti(Oi-Pr)2(HFAA)2 (HFAA=hexafluoroacetylacetone) were sublimed substantially during the thermal decomposition. Pyrolysis mechanism of these complexes are dependent on type of β-diketone but removal of Oi-Pr ligands occurs before the decomposition of β-diketonate ligands.

Experimental Investigation of Steam Plasma Characteristics for High Energy Density Metal Powder Ignition Using Optical Emission Spectroscopy Method (OES 방법을 이용한 고에너지 금속 분말 점화용 스팀 플라즈마 특성에 관한 실험적 고찰)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.545-550
    • /
    • 2012
  • High Energy density metal powder has high melting point of oxide film. By this, the ignition source that can make a thermal effect of high-temperature during short time is needed to overcome ignition disturbance mechanism by oxide film. So effective ignition does not occurred with hydrocarbon ignitor, $H_2-O_2$ ignitor, high power laser. But steam plasma can be generate about 5000 K temperature field in short order. Because a steam plasma uses steam as the working gas, it is environmental-friendly and economical. Therefore in this study, we analyze steam plasma temperature field and radical species with optical emission spectroscopy method in order to apply steam plasma ignitor to metal combustion system and cloud particle ignition was identified in visual.

  • PDF

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Characterization on the Ozone Oxidation of Raw Natural Rubber Thin Film using Image and FT-IR Analysis

  • Kim, Ik-Sik;Lee, DooYoul;Sohn, Kyung-Suk;Lee, Jung-Hun;Bae, JoongWoo
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.110-117
    • /
    • 2019
  • The characterization of the ozone oxidation for raw natural rubber (NR) was investigated under controlled conditions through image and fourier transform infrared (FT-IR) analysis. The ozone oxidation was performed on a transparent thin film of raw NR coated on a KBr window in a dark chamber at $40^{\circ}C$ under low humidity conditions to completely exclude thermal, moisture, or light oxidation. The ozone concentration was set at 40 parts per hundred million (pphm). Before or after exposure to ozone, the image of the thin film for raw NR was observed at a right or tilted angle. FT-IR absorption spectra were measured in the transmission mode according to ozone exposure time. The ozone oxidation of NR was determined by the changes in the absorption peaks at 1736, 1715, 1697, and $833cm^{-1}$, which were assigned to an aldehyde group (-CHO), a ketone group (-COR), an inter-hydrogen bond between carbonyl group (-C=O) from an aldehyde or a ketone and an amide group (-CONH-) of protein, and a cis-methine group ($is-CCH_3=CH-$, respectively. During ozone exposure period, the results indicated that the formation of the carbonyl group of aldehyde or ketone was directly related to the decrement of the double bond of cis-1,4-polyisoprene. Only carbonyl compounds such as aldehydes or ketones seemed to be formed through chain scission by ozone. Long thin cracks with one orientation at regular intervals, which resulted in consecutive chain scission, were observed by image analysis. Therefore, one possible two-step mechanism for the formation of aldehyde and ketone was suggested.

Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses

  • Vani, P.;Vinitha, G.;Sayyed, M.I.;AlShammari, Maha M.;Manikandan, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4106-4113
    • /
    • 2021
  • Rare earth doped barium tellurite glasses were synthesised and explored for their radiation shielding applications. All the samples showed good thermal stability with values varying between 101 ℃ and 135 ℃ based on dopants. Structural properties showed the dominance of matrix elements compared to rare earth dopants in forming the bridging and non-bridging atoms in the network. Bandgap values varied between 3.30 and 4.05 eV which was found to be monotonic with respective rare earth dopants indicating their modification effect in the network. Various radiation shielding parameters like linear attenuation coefficient, mean free path and half value layer were calculated and each showed the effect of doping. For all samples, LAC values decreased with increase in energy and is attributed to photoelectric mechanism. Thulium doped glasses showed the highest value of 1.18 cm-1 at 0.245 MeV for 2 mol.% doping, which decreased in the order of erbium, holmium and the base barium tellurite glass, while half value layer and mean free paths showed an opposite trend with least value for 2 mol.% thulium indicating that thulium doped samples are better attenuators compared to undoped and other rare earth doped samples. Studies indicate an increased level of thulium doping in barium tellurite glasses can lead to efficient shielding materials for high energy radiation.