• Title/Summary/Keyword: Thermal loads

Search Result 597, Processing Time 0.034 seconds

A Study on the Indoor Thermal Environment of the Large Enclosure Without Cooling Loads from Occupancy in Summer (대공간내 인체발열 미고려시의 하계 온열환경 조사)

  • Jeong, Seong-Jin;Choi, Dong-Ho;Yang, Jeong-Hoon;Seok, Ho-Tae
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.3-8
    • /
    • 2008
  • The purpose of this study is to provide fundamental cooling design data for the large public enclosures as gymnasium. This study executed indoor thermal environment verification of the existing gymnasium by measuring temperature distribution with cooling the space in summer. Cooling loads from human body was not considered. We examined various indoor thermal environment factors of the large enclosed space in this study which include vertical and horizontal temperature distribution, supply and return air flow feature, thermal comfort environment feature, amount of ventilation and etc.

  • PDF

A Study on the Indoor Thermal Environment of the Large Gymnasium Space in Summer - Without Cooling Loads from Occupancy - (대규모 실내경기장의 하계 온열환경 특성 실측조사 - 인체부하 미고려 조건 -)

  • Jeong, Seong-Jin;Choi, Dong-Ho;Yang, Jeong-Hoon;Seok, Ho-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.91-101
    • /
    • 2007
  • The purpose of this study is to provide fundamental cooling design data for the large public enclosures as gymnasium. This study executed indoor thermal environment verification of the existing gymnasium by measuring temperature distribution with and without cooling the space in summer. Colling loads from human body was not considered. We examined various indoor thermal environment factors of the large enclosed space in this study which include vertical and horizontal temperature distribution, supply and return air flow feature, thermal comfort environment feature, amount of ventilation and etc.

  • PDF

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.

Welding Deformation Analysis of Plates Using the Inherent Strain-based Equivalent Load Method (고유변형률 기반 등가하중법을 이용한 판의 용접변형 해석)

  • Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.39-46
    • /
    • 2010
  • IIn this study, used is the equivalent loading method based on the inherent strain to predict the welding deformation of panel members. Equivalent loads are computed from the inherent strain distribution around weld line, and then applied for the linear finite element analysis. Thermal deformation of panel members can be, of course, carried out through the rigorous thermal elasto-plastic analysis procedure but it is not practical in applying to predicting the welding deformation of large structures such as blocks found in a ship structure from view of computing time. The present equivalent load approach has been applied to flat plate model to verify the present approach, and to several curved plate models having the curvature in the welding direction to investigate the effect of the longitudinal curvature upon the weld-induced deformation. The results are compared with those by thermal elasto-plastic analysis. As far as the present results are concerned, it can be said that the present approach shows good agreement with the results by welding experiment and the rigorous thermal elasto-plastic analysis. The present approach has been also applied to predict the welding deformation of panel block as for application illustration to practical model.

Thermo-Acoustic Emission Behavior of Composites (복합재료의 열-음향방출거동)

  • 김영복;우성충;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.111-115
    • /
    • 2001
  • Thermo-acoustic emission (AE) from composite laminates under the repetitive thermal cyclic loads have been quantitatively analyzed in consideration of AE source mechanisms. The repetitive thermal load brought about a large reduction, i.e. an exponential decrease in AE total ringdown counts and AE amplitudes. It was thought that generation of thermo-AE during the first thermal cycle was not caused by crack propagation but by secondary microfracturing due to abrasive contact between crack surfaces.

  • PDF

Effect of Pad-fastener on Thermal Buckling of Track (궤도의 온도좌굴에 미치는 체결재의 영향)

  • 배준현;임남형;강영종
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.654-659
    • /
    • 2002
  • Continuous Welded rail(C.W.R.) tracks has many advantages over the conventional jointed rail track. Due to the elimination of rail joints for thermal expantion, however it many cause the track to be suddenly bucklled by thermal loads. The present study investigates the influences of Pad-fastner on the Thermal buckling behavior of C.W.R. Parametric studies are performed to evaluate the effects of the individual parameters on the upper and lower critical bucklig temperature.

  • PDF

Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads (원주방향 부분 관통 균열이 존재하는 직관에 인장하중과 열하중의 복합하중이 가해지는 경우의 균열 선단 응력장)

  • Je, Jin Ho;Kim, Dong Jun;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1207-1214
    • /
    • 2014
  • Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints. This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects.

Dry Friction Characteristics of Bulk Amorphous Thermal Spray Coating and Amorphous Metallic Matrix Composites (벌크 비정질 용사코팅과 비정질 기지 복합재료의 건조 마찰특성)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • The friction behaviors of bulk amorphous thermal spray coating (BAC) and second phase-reinforced composite coatings using a high velocity oxy-fuel spraying process were investigated using a ball-on-disk test rig that slides against a ceramic ball in an atmospheric environment. The surface temperatures were measured using an infrared thermometer installed 50 mm from the contact surface. The crystallinities of the coating layers were determined using X-ray diffraction. The morphologies of the coating layers and worn surfaces were observed using a scanning electron microscope and energy-dispersive spectroscopy. The results show that the friction behavior of the monolithic amorphous coating was sensitive to the testing conditions. Under lower than normal loads, a low and stable friction coefficient of about 0.1 was observed, whereas under a higher relative load, a high and unstable friction coefficient of greater than 0.3 was obtained with an instant temperature increase. For the composite coatings, a sudden increase in friction coefficient did not occur, i.e., the transition region did not exist and during the friction test, a gradual increase occurred only after a significant delay. The BAC morphology observations indicate that viscous plastic flow was generated with low loads, but severe surface damage (i.e., tearing) occurred at high loads. For composite coatings, a relatively smooth surface was observed on the worn surface for all applied loads.

A Study on the Thermal Design for A Signal Processor in the Micro-Wave Seeker (초고주파 탐색기 신호처리부의 방열설계에 관한 연구)

  • Lee, Won-Hee;Yu, Young-Joon;Kim, Ho-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • This paper focuses on the thermal design of a signal processor in Micro-Wave Seeker. High temperature environment and ESS(Environmental Stress Screening) test condition should be considered in designing a signal processor. First, we performed the thermal analysis to know conditions under which a signal processor is thermally reliable. As a result of thermal analysis, we found that adopting heat transfer block to the thermally fragile components is most efficient, because the heat transfer block can control the thermal loads of the individual components. Next, we verified this solution by numerical simulation and experiment and concluded that thermal reliability of a signal processor can be achieved. Maximum temperature difference between numerical simulation and experiment is about $2^{\circ}C$.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.