• Title/Summary/Keyword: Thermal insulation material

Search Result 391, Processing Time 0.028 seconds

Thermal Analysis and Equivalent Lifetime Prediction of Insulation Material for Nuclear Power Cable (원전 케이블용 절연재료의 열분석과 등가수명)

  • Kim, Ji-Yeon;Yang, Jong-Suk;Park, Kyeung-Heum;Seong, Baek-Yong;Bang, Jeong-Hwan;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • The activation energy of a material is an important factor that significantly affects the lifetime and can be used to develop a degradation model. In this study, a thermal analysis was carried out to evaluate and collect quantitative data on the degradation of insulation materials like EPR and CSP used for nuclear power plant cables. The activation energy was determined from the relationship between log ${\beta}$ and 1/T based on the Flynn.Wall.Ozawa method, by a TGA test. The activation energy was also derived from the relationship between ln(t) and 1/T based on isothermal analysis, by an OIT test. The activation energy of EPR derived from thermal analysis was used to calculate the accelerated aging time corresponding to the number of years of use, employing the Arrhenius equation, and determine the elongation corresponding to the accelerated aging time.

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

Study on Change of Thermal Conductivity According to Environmental Conditions (환경 조건에 따른 열전도율 변화에 관한 연구)

  • Seo, Eun-Seok;Kim, Bong-Joo;You, Nam-Gyu;Hong, Sang-Hun;Kim, Han-Nah;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.66-67
    • /
    • 2019
  • Insulated buildings are exposed to the external environment due to aging and construction problems, resulting in a decrease in building energy efficiency. Therefore, the purpose of this paper is to provide a material for the change in thermal conductivity of the insulation when it is exposed to various external environments. In the experiment, five types of heat insulating materials were selected, stored under different environmental conditions, and the thermal conductivity was measured periodically to confirm the change in thermal conductivity. As a result, the thermal conductivity of all the insulating materials except the PF board increased with the passage of time. This is because thermal insulation absorbs atmospheric moisture under all environmental conditions and the thermal conductivity increases, and in the case of thermal insulation stored indoors in environmental conditions, the temperature differs from the thermal insulation stored outside. It is considered that there is little evaporation of moisture absorbed constantly, and the change in thermal conductivity is large.

  • PDF

An Experimental Study on the Evaluation of Fastening Unit Insulation Developed for the Insulation of Curtain Wall

  • Kim, Bong-Joo;Kim, Kyeong-A
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.243-256
    • /
    • 2012
  • This study is the experimental study to improve the insulation of the fastening unit system, which has the most vulnerable insulation in the curtain walls. The Fastening Units were designed and fabricated to minimize the connection part of mullions. In addition, slight movements were taken into account and the performance of the middle layer was evaluated by forming an insulation layer with the vibration-proof rubber and the silicon to satisfy the mechanical and thermal performance criteria. A total of 10 experiments were performed under various conditions, such as indoor-outdoor temperature difference, type of insulation material, thickness of insulation material, and others. using the fabricated Fastening Units. As a result, the vibration-proof rubber insulation showed the temperature difference of $2.2^{\circ}C-5.0^{\circ}C$, and the silicon insulation showed the temperature difference of $2.8^{\circ}C-4.5^{\circ}C$, compared to the non-insulated Fasteniirature difference, typesng Units. When these results were compared with the psychometric chart graph, the insulated Fastening Unit designed in this study can be considered to prevent the dew condensation.

Effect of Nano-silicate on the Mechanical, Electrical and Thermal Properties of Epoxy/Micro-silica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.153-156
    • /
    • 2012
  • In order to develop electrical insulation materials, epoxy/micro-silica composite (EMC) and epoxy/micro-silica/nano-silicate composite (EMNC) were prepared, and their tensile and flexural strength, AC insulation breakdown strength and thermal conductivity and thermal expansion coefficient were compared. Nano-silicate was prepared in an epoxy matrix by our AC electric field process. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of nano-silicate to the EMC system.

Insulation Characteristic of Waste Sawdust-mixing Concrete (폐톱밥 혼입 콘크리트의 단열특성에 관한 실험적 연구)

  • Hong, Seung-Ryul;Cho, Byung-Hun;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.98-104
    • /
    • 2005
  • Saw dust concrete f3r finding out insulation characteristic was tested using test plate $30cm{\times}30cm{\times}5cm$. basically, molds f3r the test of compressive, tensile, normal without sawdust, $0.05\%,\;0.1\%,\;0.2\%,\; 0.4\%,\;0.6\%,\;0.8\%,\;1.0\%,\;1.2\%,\;1.4\%,\;1.6\%,\;1.5\%,\;2.0\%$, mixing proportion. heat conductivity of the saw dust concrete mixed with the above proportion was taken in this study. Thermal conduction of normal concrete depends on mixing proportion strength aggregate character, water content. all these items are specified here in fables. $1.8\%\~2.0\%$ saw-dust mising concrete shows as the faction as normal insulation material has its function. and the higher saw-dust mixing rate becomes, the thermal conduction becomes the less Then, the conclusions are that saw-dust using concrete has better insulation function than normal concrete.

A Measurement Study of a Dynamic Insulator Thermal Performance (동적 단열재의 열성능 측정에 관한 연구)

  • Ko, Seon-Mi;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.361-368
    • /
    • 2010
  • Due to the insulation and the air-tightness requirement in modern buildings have resulted NBS(New Building Syndrome) and SBS(Sick Building Syndrome) of IAQ problems. Therefore, energy efficient way of solving such IAQ issues are of major concern in these days and building industries. This paper introduces a method to improve thermal performance with a DI(Dynamic Insulation) concept. The characteristic of the dynamic insulation is that the lower U-value as the higher air velocity through the DI in a micro level. A thermal performance monitoring study has been conducted to show the energy impact of porous DI over the static insulation material. The results show that up to 45% could be improved in the case with DI compared to the conventional insulation.

The characteristics of mineral hydrate insulation material using activated cement prepared from pilot plant activation system

  • Seo, Sung Kwan;Chu, Yong Sik;Kim, Tae Yeon;Kim, Yoo
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.428-433
    • /
    • 2018
  • In this study, using the pilot plant activation system, the activated cement has been manufactured and then applied to the manufacturing process of mineral hydrate insulating material. The fineness of the activated cement is controlled at $5,000cm^2/g$ and $7,500cm^2/g$ and the features of mineral hydrate insulating material, using OPC and the activated cement for each degree of fineness, has been analyzed. As the result of analyzing the crystal habit of the manufactured mineral hydrate insulting material, it is analyzed that the main crystal phase of specimen is tobermorite and some quartz peak has been detected. As the degree of fineness of the activated cement increases, the height of bubble of slurry increases as well, whereas the tendency for the density character to decrease has been detected. Along with it, as the density character decreases, the compression strength has decreases, whereas the tendency for the thermal characteristic to increases has been detected. The main features of mineral hydrate insulating material, using the activated cement with the fineness of $7,500cm^2/g$, the compression strength of 0.36 MPa, and the thermal conductivity of $0.044W/m{\cdot}K$, presents the excellent features as insulation.

A Characteristic Study of Inorganic Insulation Using Balloon Pearlite (발룬 펄라이트를 사용한 무기단열재의 특성 연구)

  • Jeon, Chanki;Park, Jongpil;Chung, Hoon;Lee, Jaeseong;Shim, jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.292-299
    • /
    • 2016
  • The insulation in buildings is very important. Insulation used in the building is largely divided into organic and inorganic insulation by its insulation material. Organic insulations material which are made of styrofoam or polyurethane are extremely vulnerable to fire. On the other hand, inorganic insulation such as mineral-wool and glass-wool are very week with moisture while they are non-flammable so that its usage is very limited. In this study, inorganic heat insulating material developed and the properties of thermal conductivity evaluated. The thermal conductivity and the water absorption of the sample in less than 50mm thickness of the board is less than 0.05W/mk, 3.0%. Bending strength and the water repellency is more than $25N/cm^2$, 98%.

Research on the Architectural Applications of High-Performance Vacuum Insulation Panel (고성능 진공단열재의 건축적인 적용에 관한 연구)

  • Kwon, Young Cheol;Kim, Suk
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • Vacuum Insulation Panel(VIP) has the lowest thermal conductivity among present insulations. It is composed of envelope, core material and getter. Aluminum film is usually used as the envelope of VIP, and it is important component to decide the useful life of VIP. In this research, the thermophysical properties of incombustible fiber glass core VIP were investigated with the possibility of its architectural applications. The results of this research can be summarized as follows: 1) The thermal conductivity of 20mm-thick fiber glass core VIP is resulted as 0.00177W/m·K, which means that 20mm-thick VIP can meet all the reinforced insulation guideline and it can be used in any envelope of any region in Korea. 2) As a result of the test of incombustion and gas toxicity, fiber glass core VIP was suitable for incombustible material. 3) As the test result for the long term thermal conductivity, fiber glass core VIP was found out that it would keep above 10 times insulating performance than polystyrene foam and glass fiber. 4) To meet the thermal transmittance of 0.12W/㎡K, limited-combustible insulation of expanded polystyrene foam and phenolic foam should be used respectively as thick as above 280mm and 170mm, incombustible VIP can meet the same insulation level with 20mm thickness. 5) The price competitiveness of incombustible VIP to meet the thermal transmittance of 0.12W/㎡·K was about 1,500won/㎡ higher than that of phenolic foam.