• Title/Summary/Keyword: Thermal insulation material

Search Result 391, Processing Time 0.029 seconds

A Study on the Thermal and Electrical Characteristics with Manufacture of the Heating Element by Using Carbon with Bar Type (봉상 카본 발열체의 제조와 열 및 전기적 특성에 관한 연구)

  • 배강열;이광성;정한식;정희택;정효민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.430-437
    • /
    • 2004
  • This paper is intended as an investigation of study on the thermal and electrical characteristics of the carbon heating element. In this experimentation, the electric material used is the crystalline graphite a kind of natural graphite. The bentonite is used to solidify the heating element and the vacuum furnace is used for sintering it. It is noted that the natural drying time should be at least 58 hours. The plating of the electric pole with the electroless nickel showed the lowest contact resistance among others. The resistance shows linear variation with regard to length. For the insulation and resolution, the glaze coating is best with 80% of water content. The temperature rising characteristic of the heating element is better than sheath heater saving 43% of rising time. The correlation equation for temperature was obtained with the electric power.

Slim Design for Membrane Type LNGC using 3X-Board (3X-Board를 적용한 멤브레인형 LNGC의 Slim화 설계)

  • Ryu, Sung-Heon;Cho, Jin-Rae;Ha, Mun-Keun;Lee, Joong-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1280-1285
    • /
    • 2003
  • In the developement of LNG cargo, the current concern focuses on the slim design of insulation layer to increase the LNG carrying capacity. Not only thermal stability with BOR(Boil-Off Rate) but structual stability against the LNG weight and the sloshing phenomenon must be also considered. In this paper, we applied the stitched sandwitch composite called the 3X-Board which is stitched through the core thickness direction using glass fiber to the LNG cargo. We evaluated the thermal and structural characteristics of 3X-Board by changing the core thickness and the material, in order to explore a validity for the slim design through the finite element analysis.

  • PDF

A Study on Evaluation of Bending Strength in FGM (경사기능재료의 굽힘강도 평가에 관한 연구)

  • Song, Jun-Hee;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.658-663
    • /
    • 2009
  • Metal/ceramic composites structures have many attractive properties with great potential for applications that demand high stiffness as well as chemical and biological stability, thermal and electrical insulation. They are currently in use for mechanical and thermal protection in cutting tool and engine parts. Thus, determination of adhesive properties for coating part is one of the most important problems for the extension of the use of coated materials. In this work, bending strength of Functionally Graded Materials(FGM) are evaluated by means of bending strength tester. The graded layer according to the load condition showed the change of the bend strength.

  • PDF

Study on the Energy Saving for School Buildings - through thermal effect of the transparent insulated opaque envelopes - (학교건물의 에너지 절약에 관한 연구 - 투명 단열외피의 열적성능을 중심으로 -)

  • Lee, S.;Kim, S.H.;Kim, K.C.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2006
  • The thermal effect of a transparent insulated opake wall with solar energy was investigated theoretically. The heat gain through transparent insulated opake wall was studied for relative simple conditions. The stationary heat transport effect was studied for layer which is built on the opake wall. This study shows that a relative low solar radiation intensity causes a great heat reduction through the transparent insulated opake wall.

  • PDF

Low Temperature Co-firing of Camber-free Ceramic-metal Based LED Array Package (세라믹-금속 기반 LED 어레이 패키지의 저온동시소성시 휨발생 억제 연구)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Ceramic-metal based high power LED array package was developed via thick film LTCC technology using a glass-ceramic insulation layer and a silver conductor patterns directly printed on the aluminum heat sink substrate. The thermal resistance measurement using thermal transient tester revealed that ceramic-metal base LED package exhibited a superior heat dissipation property to compare with the previously known packaging method such as FR-4 based MCPCB. A prototype LED package sub-module with 50 watts power rating was fabricated using a ceramic-metal base chip-on-a board technology with minimized camber deformation during heat treatment by using partially covered glass-ceramic insulation layer design onto the aluminum heat spread substrate. This modified circuit design resulted in a camber-free packaging substrate and an enhanced heat transfer property compared with conventional MCPCB package. In addition, the partially covered design provided a material cost reduction compared with the fully covered one.

Microstructure and Thermal Insulation Properties of Ultra-Thin Thermal Insulating Substrate Containing 2-D Porous Layer (2차원 기공층을 포함하는 초박형 단열기판의 미세구조 및 단열 특성)

  • Yoo, Chang Min;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Kim, Sung Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.683-687
    • /
    • 2017
  • We investigated the structure of an ultra-thin insulating board with low thermal conductivity along z-axis, which was based on the idea of void layers created during the glass infiltration process for the zero-shrinkage low-temperature co-fired ceramic (LTCC) technology. An alumina and four glass powders were chosen and prepared as green sheets by the tape casting method. After comparison of the four glass powders, bismuth glass was selected for the experiment. Since there is no notable reactivity between alumina and bismuth glass, alumina was selected as the supporting additive in glass layers. With 2.5 vol% of alumina powder, glass green sheets were prepared and stacked alternately with alumina green sheet to form the 'alumina/glass (including alumina additive)/alumina' structure. The stacked green sheets were sintered into an insulating substrate. Scanning electron microscopy revealed that the additive alumina formed supporting bridges in void layers. The depth and number of the stacking layers were varied to examine the insulating property. The lowest thermal conductivity obtained was 0.23 W/mK with a $500-{\mu}m-thick$ substrate.

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

Estimation of Heat Insulation and Light Transmission Performance According to Covering Methods of Plastic Greenhouses (플라스틱온실의 피복방식에 따른 보온 및 광투과 성능 평가)

  • Lee, Hyun-Woo;Kim, Young-Shik;Sim, Sang-Youn;Lee, Jong-Won;Diop, Souleymane
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.270-278
    • /
    • 2013
  • The objective of the present study is to provide data needed to decide covering method to be able to increase the thermal insulation and light transmittance efficiency of commercial greenhouse. The thermal insulation effect, PPF transmittance and quantity of condensation water were estimated in experimental tomato greenhouses covered with three types of coverings of single layer, air inflated and conventional double layers covering. The overall heat flow of air inflated double layers greenhouse was similar to that of conventional double layers greenhouse, but the temperature between covering material and thermal screen in air inflated double layers greenhouse was lower than that in conventional double layers greenhouse at the same outside temperature condition due to air leakage through the gap of roof vent. The overall heat transfer coefficients acquired by experiment that was performed in single layer and conventional double layers greenhouses were close to those obtained from model experiment. Even though the PPF transmittance of air inflated double layers greenhouse was lower than that of single layer greenhouse, which was greater than that of conventional double layers greenhouse. The quantity of condensation water on covering surface of single layer greenhouse was greater than that of air inflated double layers greenhouse due to lower covering surface temperature.

Usage and satisfaction of bed cloth fabrics: a reality study

  • Lee, Heeran
    • Journal of Fashion Business
    • /
    • v.20 no.6
    • /
    • pp.52-65
    • /
    • 2016
  • Presently, sleep disorders are rapidly increasing due to sudden social development and lifestyle diversification. Among the various factors contributing to comfortable sleep, bedclothes are a major factor that readily influence the sleeping conditions, as they directly come in contact with the human body. This study therefore researches use and purchasing status of bedclothes by consumers, as well as the subjective satisfaction. This would accordingly help us to understand the consumers' performance needs, and collect basic data to develop bedclothes that assist comfortable sleep. This study used multiple choice questions and a 5-point Likert scale in a survey-style research. The results of the study indicate that consumers prudently considered practicality and durability, as bedclothes are seldom purchased. The most preferred material was cotton, but the use of microfiber, a new material, has also increased. Further, consumers' preferred lightweight bedclothes that displayed excellent water absorption, thermal insulation, durability, detergency, and flexibility. Hence, bedclothes developed according to the results of this study are expected to aid comfortable sleep.

The Effect of Annealing Treament with Aluminum Oxide as Medium Layer and Platinum Heater (매개층 알루미늄산화막과 백금 발열체의 열처리 효과)

  • 노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.314-317
    • /
    • 1997
  • The electrical and physical characteristics of aluminum oxide and Pt thin films on it, deposited by reactive sputtering and DC magnetron sputtering respectively, were analyzed with increasing annealing temperature(400~80$0^{\circ}C$) by four point probe, SEM and XRD. Under $600^{\circ}C$ of annealing temperature, aluminum oxide had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin films and the resistivity of Pt thin films was improved. But these properties of aluminum oxide and Pt thin films on it were degraded over $700^{\circ}C$ of annealing temperature because aluminum oxide was changed into metal aluminum and then reacted to Pt thin films deposited on it. In the analysis of the thermal charateristics of Pt micro-heater fabricated on Si07/si substrate, the temperature of Pt micro-heater is up to 41$0^{\circ}C$ with the power dissipation 1.8 watts.

  • PDF