• 제목/요약/키워드: Thermal insulation coating

검색결과 47건 처리시간 0.026초

표면코팅 구조재의 달열효과 분석 (An Analysis on Thermal Insulation Effect of Farm Structures Coated with Surface Treatment)

  • 서원명;윤용철
    • 한국농공학회논문집
    • /
    • 제46권4호
    • /
    • pp.39-46
    • /
    • 2004
  • This experiment was carried out to study on the effect of surface coating on thermal insulation of farm structures to improve thermal resistance and reflective effect of solar radiation. Nine different types of experimental specimen were compared in the temperature variations of inside and outside; A, B, C, D. E and F types are box container and G, H and I types are drum container. The size of these containers is $1,500{\times}2,000{\times}2,500$ mm and ${\varphi}$ $280{\times}330$ mm, respectively. Specimen of 3-type box(A, B, C) is galvanized steel sheet of thickness 0.45 mm. D, E and F types are sandwich panel of the thickness 50 mm inserted with urethane, glass wool and polystyrene form, respectively. G, H and I types are paint pot using in general. The surface of A. D, E, F and I types didn't any treatment, B, C and G types were treated with thermal insulation coating on the outside surface(B, G) or the inside and outside surface(C). And H type was treated with water paint coating on the only outside surface. In general, the experimental results showed the following tendencies; In case of A, B and C types. it was found that the thermal insulation effect of types coated with thermal insulation coating was improved remarkably than that of no treatment. And the thermal insulation effect between steel sheet and sandwich panel type was nearly similar There was not a significant difference of thermal insulation effect between thermal insulation coating and water paint coating. In time of drum container filled with rough rice, The difference of heat transfer tendency and temperature variation among surface treatments was nearly similar that of box types of galvanized steel sheet. And there was time lag about 6 hours between the temperature of middle part of rice and that of inside or outside surface.

Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying

  • Jeon, Hak-Beom;Lee, In-Hwan;An, Gye Seok;Oh, Yoon-Suk
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.450-454
    • /
    • 2018
  • In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.

비정상열선법에서 열선의 절연코팅이 선형구간의 초기시점에 미치는 영향 (Effect of Insulation Coating on Start Time of Linear Region for Transient Hot-wire Method)

  • 이승현;김현진;김규한;박용준;장석필
    • 대한기계학회논문집B
    • /
    • 제37권12호
    • /
    • pp.1147-1152
    • /
    • 2013
  • 본 논문에서는 절연된 열선을 이용한 비정상열선법에서 열선의 절연코팅이 선형구간의 초기시점에 미치는 영향을 살펴보기 위하여 이론적인 연구를 수행해 보았다. 이를 위해, 절연된 열선의 온도상승에 관한 해석적 해에서 선형구간의 초기시점에 영향을 미치는 중요한 인자들을 파악해 보았으며, 이러한 인자들의 영향이 무시할 만큼 작아지는 임계시간(critical time)에 대한 연구를 수행해 보았다. 이론적인 연구 결과, 열선의 반경 및 코팅의 두께가 작을수록 절연코팅의 영향이 빠르게 감소하였고, 또한 절연물질의 열전도도가 크고 열확산계수가 작을수록 절연코팅의 영향이 빠르게 감소함을 알 수 있었다. 본 연구의 결과는 절연된 열선을 이용한 비정상열선법에서, 선형구간의 초기시점을 결정하는데 도움이 될 것으로 사료된다.

Temperature on structural steelworks insulated by inorganic intumescent coating

  • Choi, J. Yoon;Choi, Sengkwan
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.1-14
    • /
    • 2013
  • Predicting the fire resistance of structures has been significantly advanced by full scale fire tests in conjunction with improved understanding of compartmental fire. Despite the progress, application of insulation is still required to parts of structural steelwork to achieve over 60 minutes of fire rating. It is now recognised that uncertainties on insulation properties hinder adaptation of performance based designs for different types of structures. Intumescent coating has recently appeared to be one of most popular insulation types for steel structures, but its design method remains to be confirmed by empirical data, as technical difficulties on the determination of the material properties at elevated temperatures exist. These need to take into account of further physiochemical transitions such as moving boundary and endothermic reaction. The impetus for this research is to investigate the applicability of the conventional differential equation solution which examines the temperature rise on coated steel members by an inorganic intumescent coating, provided that the temperature-dependent thermal/mechanical insulation properties are experimentally defined in lab scale tests.

저방사 코팅이 진공창의 열성능에 미치는 영향 (Study on thermal performance of vacuum window with various low-ε coating glasses)

  • 조성환;태춘섭
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.300-311
    • /
    • 1997
  • A theoretical method was developed to analyze the effect of low-$\varepsilon$ coatings which have influence on thermal performance of vacuum windwo glazing and double pane glazing. The overall heat transfer coefficient(U) value and thermal performance were analyzed by theroretical method on various kins of windows. TRNSYS program was used to analyze total heating and cooling energy consumption on the model building which has various windows. As the result, better thermal insulation can be achieved on the vacuum window glazing than double pane glazing when low-$\varepsilon$ coating was done on the surface of glass. Total heating and cooling energy consumption was almost same on the double pane window glazing but was lessened on the vacuum window glazing when the window size of south direction increased. Therefore, low-$\varepsilon$ coating was very necessary for vacuum window glazing in order to improve thermal insulation performance and efficient energy conservation can be achieved by vacuum window glazing at the real building which has large window.

  • PDF

CRITICAL HEAT FLUX FOR DOWNWARD-FACING BOILING ON A COATED HEMISPHERICAL VESSEL SURROUNDED BY AN INSULATION STRUCTURE

  • Yang, J.;Cheung, F.B.;Rempe, J.L.;Suh, K.Y.;Kim, S.B.
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.139-146
    • /
    • 2006
  • An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

나노하이브리드 절연코팅 수지의 내열특성 (Thermal Properties of Insulation Coating Resin by Nanohybrid Method)

  • 한세원;강동필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.275-275
    • /
    • 2010
  • 나노하이브리드 방법으로 제조된 변성 폴리이드계 나노하이브리드 절연코팅의 표면 내열특성을 비교 분석하였다. 최근 절연코팅의 사용환경이 열적내구성을 높게 요구하는 경향이 크다. 따라서 이러한 환경에 맞는 절연성과 열적내구성을 구현하기 위해서는 열적내구성이 우수한 세라믹 일자를 수지에 분산시켜 그 성능을 개선할 필요가 있다. 본 논문에서는 나노 하이브리드 방법으로 제조된 변성 폴리이드계 나노하이브리드 절연코팅의 표면 내열특성을 비교 분석하였다.

  • PDF

실리카 에어로겔을 이용한 자외선 경화형 복합 코팅 물질의 제조 및 단열 특성 (Preparation and Thermal Insulation Property of UV Curable Hybrid Coating Materials Based on Silica Aerogel)

  • 김남이;김성우
    • 한국응용과학기술학회지
    • /
    • 제29권1호
    • /
    • pp.141-148
    • /
    • 2012
  • 본 연구에서는 초소수성 실리카 에어로겔을 이용하여 단열 성능을 갖는 투명 필름용 유/무기 복합 코팅물질을 제조하였다. 바인더 물질로 사용된 자외선 경화형 우레탄 아크릴레이트 수지와 에어로겔과의 상용성을 위해 계면활성제(Brij 56)를 이용하여 에어로겔의 표면을 개질하였다. 개질된 에어로겔을 고분자 수지와 복합화한 코팅 용액을 폴리카보네이트 기지재에 코팅한 후 자외선경화를 통해 코팅필름을 제조하였다. 에어로겔이 10 vol% 함량으로 첨가되었을 때, 코팅필름의 단열성능은 측정된 열전도도 기준으로 순수 기지재 대비 28% 정도로 향상되었다. 또한, 코팅필름의 광투과율은 에어로겔이 50 vol%로 과량 첨가된 경우에도 80% 이상 높은 수준을 유지하였으며, 우수한 접착성(5B) 및 연필 경도(4H)를 보여주었다.

마이크로 중공구를 이용한 자외선 경화 코팅 박막의 단열 특성 (Thermal Insulation Property of UV Cure Coatings Using Hollow Micro-Spheres)

  • 김남이;장영욱;김성우
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.621-626
    • /
    • 2012
  • 본 연구에서는 마이크로 기공의 중공구를 유기 고분자 수지와 복합화한 유/무기 하이브리드 물질을 제조하여 우수한 단열 성능을 갖는 코팅유리를 개발하고자 하였다. 유기 고분자 물질로는 투명성과 접착성이 우수한 6관능기의 우레탄 아크릴레이트(UP118), 3관능기의 trimethylolpropane triacrylate (TMPTA), 2관능기의 1,6-hexanediol diacrylate (HDDA), 광 개시제(Irgacure184) 등으로 구성된 자외선 경화형 수지를 사용하였다. 유리 및 실리카 중공구를 고분자 수지에 각각 10~40 vol%까지 첨가하여 얻어진 코팅 졸을 투명유리에 바(bar)코팅 방식으로 박막을 형성시킨 후 자외선 경화를 통해 최종 코팅유리를 제조하였다. 마이크로 중공구의 종류 및 함량이 제조된 코팅유리의 광 투과율, 열전도도, 접착성 및 표면 경도에 미치는 영향을 조사하였다. 복합물 코팅유리는 중공구가 과량 첨가되어도 우수한 접착성(5B)을 유지하였으며, 단열 성능은 각 중공구가 20 vol%만 함유되어도 뚜렷하게 향상된 결과를 나타냈다. 또한 실리카 중공구(SP)를 단열 재료로 사용하였을 경우 광 투과율 80 %의 투명 코팅유리를 얻을 수 있었다.

활성백토 첨가율에 따른 기능성 발열도료의 특성 (Properties of Functional Heating Paints according to Additional Ratio of Activated Clay)

  • 이주원;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.35-36
    • /
    • 2023
  • Safety management of steel frame members is a very important part to maintain safety and function. However, precise inspection is not possible for steel frame members due to finishing materials and insulation materials, leading to poor inspection. For steel members, an insulating spray coating method is used for high thermal conductivity. The insulation spray method is not only uneconomical, but also has the disadvantage of spoiling the aesthetics. In addition, VOCs are released from paints used in spraying, so a solution is needed. In this study, heating paint was used to improve the disadvantages of the insulation spray coating method and the high thermal conductivity of steel frame members. In addition to this, in order to reduce VOCs generated from the paint, active clay was added to produce a functional exothermic paint, and then the experiment was conducted. As the amount of activated clay increased, the film thickness increased, and the VOCs emission and thermal conductivity decreased.

  • PDF