• Title/Summary/Keyword: Thermal infrared camera

Search Result 231, Processing Time 0.029 seconds

The Friction Characteristic and Distribution of Temperature in The Continuous Braking Effort on The Train Control (열차 제어의 연속 제동시 마찰특성과 온도분포)

  • Choi K.S.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.55-58
    • /
    • 2005
  • During braking at a train, thermal energy is generated due to the frictions between disk and lining and wheel and shoe. In general, the braking transfers the kinetic energy into thermal energy. Therefore, the frictional characteristics are varied according to the braking force, the thermal resistance, and the thermostable, etc. Using a Dynamo testing we have studied the frictional characteristics and the thermal distribution to investigate a stable speed and to improve the testing method through comparing and analysing in the measurement of the thermocouple temperature and infrared camera.

  • PDF

A Study on Reliability Validation by Infrared Thermography of Composite Material Blade for Wind Turbine Generator (풍력발전용 복합소재 블레이드의 적외선 열화상 검사를 이용한 신뢰성 검증)

  • Kang, Byung Kwon;Nam, Mun Ho;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.176-181
    • /
    • 2014
  • In these days, new and renewable energy is getting popular around globe and wind power generator is one of the renewable energy. In this study, we conducted a study on defect detection of composite material blade for wind power generator by applying active infrared thermography and produced a defect test piece by applying composite material used for blade of wind power generator. An infrared thermal camera and 2 kW halogen lamp are used for the purpose of research as equipments. Also, we analyzed temperature characteristic by using infrared thermal camera after checking a heat source on a test piece and found effectiveness of infrared thermography to blade of wind power generator by detecting defects resulting from temperature difference of a test piece, which eventually improve the safety and reliability of the composite material blade.

Implementation of Infrared Thermal Image Processing System for Disaster Monitoring (재난 감시를 위한 적외선 열화상 처리 시스템의 구현)

  • Kim, Won-Ho;Kim, Dong-Keun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 2010
  • This paper presents design and implementation of infrared thermal image processing system based on the digital media processor for disaster monitoring. The digital thermal image processing board is designed and implemented by using commercial chips such as DM642 processor and video encoder, video decoder. The implemented functions for disaster monitoring are to analyze temperature distribution of a monitoring infrared thermal image and to detect disaster situation such as fire. For the input of infrared thermal image processing system, an infrared camera of type of the $320\;{\times}\;240\;{\mu}$-bolometer is used. The required functions are confirmed with 10 frame/second of processing performance by testing of the prototype and Practicality of the system was verified.

Temperature Measurement of Photovoltaic Modules Using Non-Contact Infrared System

  • Jovanovic, Ugljesa;Mancic, Dragan;Jovanovic, Igor;Petrusic, Zoran
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.904-910
    • /
    • 2017
  • This paper presents temperature measurement of solar photovoltaic modules using the custom-made system composed of an infrared temperature sensor and a microcontroller. The obtained measurement results are processed, displayed and stored on a PC using the custom-made virtual instrument. The proposed system overcomes some of the problems related to the contact sensor application, and at the same time offers accurate readings and better flexibility. The proposed system is especially suitable for applications where the cost is a limiting factor in the choice of measuring system. The conducted analysis and the obtained results have shown an excellent accuracy of the proposed system in comparison to a high quality thermal imaging camera used as the reference instrument.

Development of an Optimum Void Detection Chart using Heat Transfer Simulation (열전달 시뮬레이션을 통한 최적공극탐지 차트개발)

  • Choi, Hyun-Ho;Park, Jin-Hyung;Ji, Goang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.241-244
    • /
    • 2006
  • It is essential to develop a large capacity, non-contact nondestructive inspection system having high reliability to investigate repaired and strengthened structures. Nowadays, an infrared camera is widely used in non-contact nondestructive inspection system. Because an infrared camera is sensitive to the surrounding environment, it is necessary to improve a sensitivity of thermal image information and a relationship between defects and thermal image information. In this papaer, presented is an optimum void detection chart for the optimum conditions to detect infrared rays from inside and outside defects like voids and cracks in concrete structures using extensive computer simulation. Sensitivity studies are performed with respect to variables influencing the temperature distribution such as heating temperature, heating time, and geometries of defect, etc. It may be stated that it could be successfully utilized for the non-contact nondestructive inspection system to detect defects in concrete structures.

  • PDF

A Study on the Bubble Flow in the Gas-Liquid Plume (기-액 기둥에서 기포유동에 관한 연구)

  • Seo, Dong-Pyo;Hong, Myung-Seok;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2105-2108
    • /
    • 2003
  • The characteristics of upward bubble flow were experimentally investigated in a liquid bath. In the present study, a thermal-infrared camera and high speed CCO camera were used to measure their temperature and local rising velocity, respectively. Heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. The rising velocity of bubble was calculated for two different experimental conditions: 1) bubble flow without kinetic energy 2) with kinetic energy. Bubble flow without kinetic energy starts to undergo the effect of inertia force 10cm away from the nozzle. Whereas, kinetic energy is dominant before 30 cm away from the nozzle in bubble flow, but after this point, kinetic energy and inertial force are applied on bubble flow at the same time.

  • PDF

Drone Infrared Thermography Method for Leakage Inspection of Reservoir Embankment (드론 열화상활용 저수지 제체 누수탐사)

  • Lee, Joon Gu;Ryu, Yong Chul;Kim, Young Hwa;Choi, Won;Kim, Han Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.21-31
    • /
    • 2018
  • The result of examination of diagnostic method, which is composed of a combination of a thermal camera and a drone that visually shows the temperature of the object by detecting the infrared rays, for detecting the leakage of earth dam was driven in this research. The drone infrared thermography method was suggested to precise safety diagnosis through direct comparing the two method results of electrical resistivity survey and thermal image survey. The important advantage of the thermal leakage detection method was the simplicity of the application, the quickness of the results, and the effectiveness of the work in combination with the existing diagnosis method.

Analysis of Laser-beam Thermal Effects In an Infrared Camera and Laser Common-path Optical System (적외선 카메라-레이저 공통광학계의 레이저빔 열 영향성 분석)

  • Kim, Sung-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.153-157
    • /
    • 2017
  • An infrared camera and laser common-path optical system is applied to DIRCM (directional infrared countermeasures), to increase boresighting accuracy and decrease weight. Thermal effects of a laser beam in a common-path optical system are analyzed and evaluated, to predict any degradation in image quality. A laser beam with high energy density is absorbed by and heats the optical components, and then the surface temperature of the optical components increases. The heated optical components of the common-path optical system decrease system transmittance, which can degrade image quality. For analysis, the assumed simulation condition is that the laser is incident for 10 seconds on the mirror (aluminum, silica glass, silicon) and lens (sapphire, zinc selenide, silicon, germanium) materials, and the surface temperature distribution of each material is calculated. The wavelength of the laser beam is $4{\mu}m$ and its output power is 3 W. According to the results of the calculations, the surface temperature of silica glass for the mirror material and sapphire for the lens material is higher than for other materials; the main reason for the temperature increase is the absorption coefficient and thermal conductivity of the material. Consequently, materials for the optical components with high thermal conductivity and low absorption coefficient can reduce the image-quality degradation due to laser-beam thermal effects in an infrared camera and laser common-path optical system.

A Sensor Module Overcoming Thick Smoke through Investigation of Fire Characteristics (화재 특성 고찰을 통한 농연 극복 센서 모듈)

  • Cho, Min-Young;Shin, Dong-In;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.237-247
    • /
    • 2018
  • In this paper, we describe a sensor module that monitors fire environment by analyzing fire characteristics. We analyzed the smoke characteristics of indoor fire. Six different environments were defined according to the type of smoke and the flame, and the sensors available for each environment were combined. Based on this analysis, the sensors were selected from the perspective of firefighter. The sensor module consists of an RGB camera, an infrared camera and a radar. It is designed with minimum weight to fit on the robot. the enclosure of sensor is designed to protect against the radiant heat of the fire scene. We propose a single camera mode, thermal stereo mode, data fusion mode, and radar mode that can be used depending on the fire scene. Thermal stereo was effectively refined using an image segmentation algorithm, SLIC (Simple Linear Iterative Clustering). In order to reproduce the fire scene, three fire test environments were built and each sensor was verified.

Evaluation of Thermography Camera Using Molded Optical Lens for Medical Applications (몰드성형 광학렌즈를 이용한 의료기기용 열화상카메라 체열진단의 적용도 평가)

  • Ryu, Seong Mi;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.624-628
    • /
    • 2013
  • With the recent development of less-costly uncooled detector technology, expensive optics are among the remaining significant cost drivers in the thermography camera. As a potential solution to this problem, the fabrication of IR lenses using chalcogenide glass has been studied in recent years. We report on the molding and evaluation of a ultra-precision chalcogenide-glass lens for the thermography camera for body-temperature monitoring. In addition, we fabricated prototype thermography camera using the chalcogenide-glass lens and obtained the thermal image from the camera. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ through the analysis of thermal image. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.