• Title/Summary/Keyword: Thermal image processing

Search Result 138, Processing Time 0.021 seconds

An Extraction of Solar-contaminated Energy Part from MODIS Middle Infrared Channel Measurement to Detect Forest Fires

  • Park, Wook;Park, Sung-Hwan;Jung, Hyung-Sup;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.39-55
    • /
    • 2019
  • In this study, we have proposed an improved method to detect forest fires by correcting the reflected signals of day images using the middle-wavelength infrared (MWIR) channel. The proposed method is allowed to remove the reflected signals only using the image itself without an existing data source such as a land-cover map or atmospheric data. It includes the processing steps for calculating a solar-reflected signal such as 1) a simple correction model of the atmospheric transmittance for the MWIR channel and 2) calculating the image-based reflectance. We tested the performance of the method using the MODIS product. When compared to the conventional MODIS fire detection algorithm (MOD14 collection 6), the total number of detected fires was improved by approximately 17%. Most of all, the detection of fires improved by approximately 30% in the high reflection areas of the images. Moreover, the false alarm caused by artificial objects was clearly reduced and a confidence level analysis of the undetected fires showed that the proposed method had much better performance. The proposed method would be applicable to most satellite sensors with MWIR and thermal infrared channels. Especially for geostationary satellites such as GOES-R, HIMAWARI-8/9 and GeoKompsat-2A, the short acquisition time would greatly improve the performance of the proposed fire detection algorithm because reflected signals in the geostationary satellite images frequently vary according to solar zenith angle.

Microstructural Characterization of Composite Electrode Materials in Solid Oxide Fuel Cells via Image Processing Analysis

  • Bae, Seung-Muk;Jung, Hwa-Young;Lee, Jong-Ho;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.86-91
    • /
    • 2010
  • Among various fuel cells, solid oxide fuel cells (SOFCs) offer the highest energy efficiency, when taking into account the thermal recycling of waste heat at high temperature. However, the highest efficiency and lowest pollution for a SOFC can be achieved through the sophisticated control of its constituent components such as electrodes, electrolytes, interconnects and sealing materials. The electrochemical conversion efficiency of a SOFC is particularly dependent upon the performance of its electrode materials. The electrode materials should meet highly stringent requirements to optimize cell performance. In particular, both mass and charge transport should easily occur simultaneously through the electrode structure. Matter transport or charge transport is critically related to the configuration and spatial disposition of the three constituent phases of a composite electrode, which are the ionic conducting phase, electronic conducting phase, and the pores. The current work places special emphasis on the quantification of this complex microstructure of composite electrodes. Digitized images are exploited in order to obtain the quantitative microstructural information, i.e., the size distributions and interconnectivities of each constituent component. This work reports regarding zirconia-based composite electrodes.

Image Processing System based on Deep Learning for Safety of Heat Treatment Equipment (열처리 장비의 Safety를 위한 딥러닝 기반 영상처리 시스템)

  • Lee, Jeong-Hoon;Lee, Ro-Woon;Hong, Seung-Taek;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.77-83
    • /
    • 2020
  • The heat treatment facility is in a situation where the scope of application of the remote IOT system is expanding due to the harsh environment caused by high heat and long working hours among the root industries. In this heat treatment process environment, the IOT middleware is required to play a pivotal role in interpreting, managing and controlling data information of IoT devices (sensors, etc.). Until now, the system controlled by the heat treatment remotely was operated with the command of the operator's batch system without overall monitoring of the site situation. However, for the safety and precise control of the heat treatment facility, it is necessary to control various sensors and recognize the surrounding work environment. As a solution to this, the heat treatment safety support system presented in this paper proposes a support system that can detect the access of the work manpower to the heat treatment furnace through thermal image detection and operate safely when ordering work from a remote location. In addition, an OPEN CV-based deterioration analysis system using DNN deep learning network was constructed for faster and more accurate recognition than general fixed hot spot monitoring-based thermal image analysis. Through this, we would like to propose a system that can be used universally in the heat treatment environment and support the safety management specialized in the heat treatment industry.

The Signal-to-Noise Ratio Enhancement of the Satellite Electro-Optical Imager using Noise Analysis Methods (영상센서신호의 잡음분석을 이용한 위성용 전자광학탑재체의 신호대잡음비 개선 방법)

  • Park, Jong-Euk;Lee, Kijun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2017
  • The Satellite Electro-Optic Payload System needsspecial requirements with the conditions of limited power consumption and the space environment of solar radiation. The acquired image quality should be mainly depend on the GSD (Ground Sampled Distance), SNR (Signal to Noise Ratio), and MTF (Modulation Transfer Function). On the well-manufactured sensor level, the thermal noise is removed on ASP (Analog Signal Processing) using the CDS (Corrective Double Sampling); the noise signal from the image sensor can be reduced from the offset signals based on the pre-pixels and the dark-pixels. The non-uniformity shall be corrected with gain, offset, and correction parameter of the image sensor pixel characteristic on the sensor control system. This paper describes the SNR enhancement method of the satellite EOS payload using the mentioned noise remove processes on the system design and operation, which is verified by tests and simulations.

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

Low Power IR Module Design for Small Arms Using Un-cooled Type Detector (비냉각 검출기를 이용한 소화기용 저전력 열상모듈 설계)

  • Sung, Gi-Yeul;Kwak, Dong-Min;Kwak, Ki-Ho;Kim, Do-Jong;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.138-144
    • /
    • 2007
  • This paper introduces the design techniques of an IR module using the 2-D array un-cooled type infrared detector which is applied to the individual combat weapon. Considering the size and weight of the hand carried weapon system, we used a very small-sized detector and applied an adaptive temperature control algorithm so that the operation consumed with low power can be possible. We applied the AR(Auto Regressive) filter to improve the signal-to-noise ratio in a thermal image processing step. We also applied the plateau equalization and boundary enhancement techniques to improve the visibility for human visual system.

Fabrication of a AlGaAs high power (~20W) laser diode array (20W급 AlGaAs 레이저 다이오드 어레이의 제작)

  • 박병훈;손낙진;배정훈;권오대
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.11
    • /
    • pp.20-24
    • /
    • 1997
  • We have successfully fabricated high power (~20W) laser diode array, which are useful for pumping Nd:YAG lasers. The laser diode aray has 20 100.mu.m-wide cahnnels of which space was adjusted to 350.mu.m to improve thermal characteristics. And channel width is 100.mu.m. For an uncoated LD array, the output power of 15.66W has been obtained at 41A under quasi-CW operation, which results in about 0.42W/A slope efficiency. After aR(5%) and HR (95%) coatings on both facets, the output power was improved up to 21.18W at 40A under the same operation as above and the slope efficiency was 0.795W/A. On the other hand, by using a near field measurement system consisting of objective lens, eyepiece, CCD camera and image processing board, the typical near field patten of 1*20 LD array was observed.

  • PDF

Application of Holographic Interferometry and 2-D PIV for HSC Convective Flow Diagnostics (Hele-Shaw Cell 내부의 열유동 해석을 위한 홀로그래픽 간섭계와 2차원 PIV의 적용)

  • Kim, Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.682-687
    • /
    • 2003
  • The variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasisteady changes of temperature field, two different measurement methods of holographic interferometry; double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves can be eliminated effectively using digital image processing technique and the reconstruction images are clear, but transient flow structure cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.

  • PDF

High Speed Displays Based on a Nonchiral Smectic C Liquid Crystal in an Antiparallel Planar Geometry

  • Jeong, Cherl-Hyun;Na, Jun-Hee;Yoon, Tae-Young;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.571-574
    • /
    • 2005
  • We demonstrated a high speed liquid crystal (LC) display mode based on a nonchiral smectic C LC in an antiparallel planar geometry. In this antiparallel planar nonchiral smectic C (APNSC) LC mode, analog gray scales and wide viewing properties are achieved using a stepwise thermal annealing process (STAP). Because of an initially stable LC alignment in large area through the STAP, the APNSC LC mode exhibits the characteristics of fast response and high contrast ratio. This new APNSC mode is suitable for processing the dynamic image at a video rate in the next-generation LCDs.

  • PDF

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.