• Title/Summary/Keyword: Thermal force

Search Result 905, Processing Time 0.025 seconds

Force Modeling and Machining Characteristics of the Intermittent Grinding Wheels

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.351-356
    • /
    • 2001
  • In the surface grinding operations, the grinding fluid cannot be supplied sufficiently in the cutting zone. Temperature generated in the cutting zone increases rapidly and causes thermal damage such as burning on the surface of a workpiece. To reduce thermal damage, the intermittent grinding wheels, which have an excellent cooling effect, have been applied. This paper describes machining characteristics by using intermittent grinding wheels. The grinding force of the intermittent wheels has been simulated by the SIMULAB, which is a program for simulating dynamic systems. Using the intermittent grinding wheels, the characteristics of grinding force, temperature, surface roughness, and geometric error have been evaluated experimently.

  • PDF

Development of a Virtual Machine Tool - Part 2 (Dynamic Cutting Force Model, Thermal Behavior Model, Feed Drive Model and Comprehensive Software Environment) (가상 공작기계의 연구 개발 - Part 2 (동절삭력 모델, 열적 거동 모델, 이송계 모델 및 통합 소프트웨어))

  • Go, Jeong-Hun;Yun, Won-Su;Gang, Seok-Jae;Jo, Dong-U;An, Gyeong-Gi;Yun, Seung-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.80-85
    • /
    • 2001
  • In Part 2, dynamic cutting force model, thermal behavior model, and feed drive model are presented for development of a virtual machine tool. Some relevant results with brief descriptions for each model are presented to verify the proposed models. Experimental results for each model agreed well with the estimated ones. The developed models in this two-part paper are partially integrated as a comprehensive software environment.

  • PDF

Development of a Virtual Machine Tool - Part 2: Dynamic Cutting Force Model, Thermal Behavior Model, Feed Drive System Model, and Comprehensive Software Environment

  • Ko, Jeong-Hoon;Yun, Won-Soo;Kang, Seok-Jae;Cho, Dong-Woo;Ahn, Kyung-Gee;Yun, Seung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.42-47
    • /
    • 2003
  • In Part 2 of this paper, the dynamic cutting force model, thermal behavior model, and feed drive model used in the development of a virtual machine tool (VMT) are briefly described. Some results are presented to verify the proposed models. Experimental data agreed well with the predicted results fer each model. A comprehensive software environment to integrate the models into a VMT is also proposed.

A Study of Influence on the Thermal deflection of the Feed system in the Bearing Arrangement method (베어링 조합방법이 이송축 열변위에 주는 영향에 관한 연구)

  • 홍성오;김선진;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.46-52
    • /
    • 2001
  • One of the important technical issues is how to decrease thermal expansion of ballscrew in proportion to the increase of machining speed. when measuring force of stretch of ballscrew, since not only actual expansion and the value of bending have to be considered, it's impossible to definite the exact value of expansion. In addition, support bearings of ballscrew gain considerable force in axial direction. It also generates thermal expansion on the ballscrew, and deteriorates the bearings. In conclusion, it's impossible to give the pretension enough to absorb the all elongation due to thermal expansion generated during machine running. If gave, bed, column and saddle are all bent to change machine accuracy, and the support bearings of ballscrew are damaged. The purpose of this paper is to study the pretension of support bearing of ballscrew in machine tool.

  • PDF

Study on the Thermal Degradation Behavior of FKM O-rings

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yoon, Yoo-Mi;Park, Sung Han;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • The degradation mechanism and physical properties of an FKM O-ring were observed with thermal aging in this experiment. From X-ray photoelectron spectroscopy (XPS) analysis, we could observe carbon (285 eV), fluoro (688 eV), and oxygen (531 eV) peaks. Before thermal aging, the concentration of fluoro atoms was 51.23%, which decreased to 8.29% after thermal aging. The concentration of oxygen atoms increased from 3.16% to 20.39%. Under thermal aging, the FKM O-ring exhibited debonding of the fluoro-bond by oxidation. Analysis of the C1s, O1s, and F1s peaks revealed that the degradation reaction usually occurred at the C-F, C-F2, and C-F3 bonds, and generated a carboxyl group (-COOH) by oxidation. Due to the debonding reaction and decreasing mobility, the glass transition temperature of the FKM O-ring increased from $-15.91^{\circ}C$ to $-13.79^{\circ}C$. From the intermittent CSR test, the initial sealing force was 2,149.6 N, which decreased to 1,156.2 N after thermal aging. Thus, under thermal aging, the sealing force decreased to 46.2%, compared with its initial state. This phenomenon was caused by the debonding reaction and decreasing mobility of the FKM O-ring. The S-S curve exhibited a 50% increase in modulus, with break at a low strain and stress state. This was also attributed to the decreasing mobility due to thermal aging degradation.

Cutting Characteristics of SiC-based Ceramic Cutting Tools Part 2 : Tool Life and Cutting Force Characteristics of SiC-based Ceramic Cutting Tools (SiC계 세라믹 절삭공구의 절삭특성 평가 Part 2 : SiC계 세라믹 절삭공구의 수명곡선과 절삭력 특성)

  • Park, June-Seuk;Kim, Kyeug-Jae;Kwon, Won-Tae;Kim, Young-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.89-95
    • /
    • 2001
  • Ceramic tool has to equip with not only high toughness and strength but also low thermal expansion and good thermal conductivity which leads to the high thermal shock resistance. These characteristics make it have longer tool life under thermal stress condition. In this study, commercial Si$_3$N$_4$ceramic cutting tool and home-made SiC based ceramic cutting tools which have different sintering time and chemical composition are tested under various cutting speed and the feed rate increase, the cutting force and the flank wear growth ratio increase, too. The performance of home-made SiC based ceramic cutting tool shows the possibility to be a new ceramic tool.

  • PDF

Optimization of the Thermal Behavior of Linear Motors with High Speed and Force [$1^{st}$Paper] (고속$\cdot$대추력 리니어모터의 열특성 최적화 [1])

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.184-191
    • /
    • 2002
  • This paper presents the thermal behavior of a synchronous linear motor with high speed and force. Such a linear motor can successfully replace ball lead screw in machine tools because it has a high velocity, acceleration and good positioning accuracy. On the other hand, low efficiency and high heating up during operation are disadvantage of linear motors. For the application of linear motors to machine tools a water-cooling system is often used. In this research, structure of the linear motor and water cooler is changed to improve the thermal behavior of the linear motor. Some important effects of an integrated cooler, an U-cooler and a thermally symmetrical cooler are presented.

A Study on the Preload and Arrangement of Combined bearing on Feed Drive system (이송계에서 베어링 조합 배열과 예압량에 관한 연구)

  • 홍성오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.440-445
    • /
    • 1999
  • One of the important technical issues is how to decrease thermal expansion of ballscrew in proportion to the increase of machining speed. When measuring force of stretch of ballscrew, since not only actual expansion and the value of bending have to be considered, it's impossible to definite the exact value of expansion. In addition, support bearings of ballscrew gain considerable force in axial direction. It also generates thermal expansion on the ballscrew, and deteriorates the bearings. In conclusion, it's impossible to give the pretension enough to absorb the all elongation due to thermal expansion generated during machine running. If gave, bed, column and saddle are all bent to change machine accuracy, and the pretension of support bearing of ballscrew in machine tool.

  • PDF

A Study on Structure of Support Ball Screw and Arrangement of Combined Bearing (볼나사 지지 구조와 베어링 조합 배열에 관한 연구)

  • 홍성오;정성택;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.51-56
    • /
    • 2002
  • In order to achieve high precision machine tools, Performance enhancement of feed drive systems is required. One of the important technical issues is how to decrease thermal expansion of ball screw in proportion to the increase of machining speed. When measuring force of stretch of ball screw, since not only actual expansion and the value of bending have to be considered, it is impossible to define the exact value of expansion. In addition, support bearings of ball screw gain considerable force in axial direction. It also generates thermal expansion on the ball screw, and deteriorates the performances of the hearings. In conclusion, it is impossible to give the pretension enough to absorb all the elongation due to thermal expansion generated during machine is running. If given bed column and saddle are all bent to chance machine accuracy, and the support bearings of ball screw is damaged.

A Study on Stress Distribution of Korean High Speed Train Wheel at Tread Braking (한국형 고속전철의 답면제동에 의한 차륜의 응력분포에 관한 연구)

  • 권범진;정흥채;김호경
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.167-173
    • /
    • 2002
  • The influence of thermal stress at tread breaking in Korean High Speed Train wheel was investigated using the coupled thermal-mechanical analysis technique. The mechanical load or wheel-rail contract load and braking load were considered during FEM analysis. During the stop braking, the effect of mechanical stress on the combined stress is relatively larger than that of thermal stress in the rim of wheel. However, the effect of thermal stress is relatively larger than that of mechanical stress in the plate of wheel. When 300% of the block force was applied, the maximum von Mises stress of 61.0 MPa was found at the outside plate around 400 mm far away from the wheel center.