• 제목/요약/키워드: Thermal field

검색결과 2,557건 처리시간 0.03초

200kW 탑형 태양열발전시스템의 Heliostat Field 설계 (Design of Heliostat Field for 200kW Tower Type Solar Thermal Power Plant)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.41-51
    • /
    • 2012
  • Heliostat field is the most important subsystem in the tower type solar thermal power plant since its optical performance affects the total system efficiency most significantly while the construction cost of it is the major part of total construction cost in such a power plant. Thus a well designed heliostat field to maximize the optical efficiency as well as to minimize the land usage is very important. This work presents methodology, procedures and result of heliostat filed design for 200kW solar thermal power plant built recently in Daegu, Korea. A $2{\times}2(m)$ rectangular shaped receiver located at 43(m) high and tilted $28^{\circ}$ toward heliostat field, 450 of heliostats of which the reflective surface is formed by 4 of $1{\times}1(m)$ flat plate mirror facet, and the land area having about $140{\times}120(m)$ size are used to form the heliostat field. A procedure to deploy 450 heliostats in radial staggered nonblocking formation is developed. Also the procedures to compute the cosine effect, intercept ratio, blocking and shading ratio in the field are developed. Finally the heliostat filed is designed by finding the optimal radial distance and azimuthal spacing in radial staggered nonblocking formation such that the designed heliostat field optical efficiency could be maximized. The designed heliostat field has 77% of annual average optical efficiency, which is obtained by annually averaging the optical efficiencies computed between the time of where sun elevation angle becomes $10^{\circ}$ after sunrise and the time of where sun elevation angle becomes $10^{\circ}$ before sunset in each day.

Low Writing Field on Perpendicular Nano-ferromagnetic

  • Wibowo, Nur Aji;Rondonuwu, Ferdy S.;Purnama, Budi
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.237-240
    • /
    • 2014
  • For heat-assisted magnetic recording, magnetization reversal probabilities of nano-Pt/MnSb multilayer film with perpendicular magnetic anisotropy under thermal pulse activation were investigated numerically by solving the Landau-Lifshift Gilbert Equation. Magnetic parameters of nano-Pt/MnSb multilayer were used with anisotropy energy of $3{\times}10^5$ erg/cc and saturation magnetization of 2100 G, which offer more than 10 y data stability at room temperature. Scheme of driven magnetic field and thermal pulse on writing mechanism was designed closely to real experiment. This study found that the chosen material is potential to be used as a high density magnetic storage that requires low writing field less than two-hundreds Oersted through definite heating and cooling interval. The possibility of writing data with a zero driven magnetic field also became an important result. Further study is recommended on the thickness of media and thermal pulse design as the essential parameters of the reversal magnetization.

A Thermo chemical Study of Arcjet Thruster Flow Field

  • J-R. Shin;S. Oh;Park, J-Y
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.257-261
    • /
    • 2004
  • Computational fluid dynamics analysis was carried out for thermo-chemical flow field in Arcjet thruster with mono-propellant Hydrazine ($N_2$H$_4$) as a working fluid. The theoretical formulation is based on the Reynolds Averaged Navier-Stokes equations for compressible flows with thermal radiation. The electric potential field governed by Maxwell equation is loosely coupled with the fluid dynamics equations through the Ohm heating and Lorentz force. Chemical reactions were assumed being infinitely fast due to the high temperature field inside the arcjet thruster. An equilibrium chemistry module for nitrogen-hydrogen mixture and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. Thermo-physical process inside the arcjet thruster was understood from the flow field results and the performance prediction shows that the thrust force is increased by amount of 3 times with 0.6KW arc heating.

  • PDF

Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load

  • Ismail Esen;Mashhour A. Alazwari;Khalid H. Almitani;Mohamed A Eltaher;A. Abdelrahman
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.475-493
    • /
    • 2023
  • In the context of nonclassical nonlocal strain gradient elasticity, this article studies the free and forced responses of functionally graded material (FGM) porous nanoplates exposed to thermal and magnetic fields under a moving load. The developed mathematical model includes shear deformation, size-scale, miscorstructure influences in the framework of higher order shear deformation theory (HSDT) and nonlocal strain gradient theory (NSGT), respectively. To explore the porosity effect, the study considers four different porosity models across the thickness: uniform, symmetrical, asymmetric bottom, and asymmetric top distributions. The system of quations of motion of the FGM porous nanoplate, including the effects of thermal load, Lorentz force, due to the magnetic field and moving load, are derived using the Hamilton's principle, and then solved analytically by employing the Navier method. For the free and forced responses of the nanoplate, the effects of nonlocal elasticity, strain gradient elasticity, temperature rise, magnetic field intensity, porosity volume fraction, and porosity distribution are analyzed. It is found that the forced vibrations of FGM porous nanoplates under thermal and live loads can be damped by applying a directed magnetic field.

알루미늄 기판에 코팅된 흑연입자의 배향도 변화와 열방사율 변화의 관계 (Relation between Thermal Emissivities and Alignment Degrees of Graphite Flakes Coated on an Aluminum Substrate)

  • 강동수;이상민;김석환;이상우;노재승
    • 한국재료학회지
    • /
    • 제24권3호
    • /
    • pp.159-165
    • /
    • 2014
  • This study is research on the thermal emissivity depending on the alignment degrees of graphite flakes. Samples were manufactured by a slurry of natural graphite flakes with organic binder and subsequent dip-coating on an aluminum substrate. The alignment degrees were controlled by applying magnetic field strength (0, 1, and 3 kG) to the coated samples. The alignment degree of the sample was measured by XRD. The thermal emissivity was measured by an infrared thermal image camera at $100^{\circ}C$. The alignment degrees were 0.04, 0.11, and 0.17 and the applied magnetic field strengths were 0, 1, and 3 kG, respectively. The thermal emissivities were 0.829, 0.837, and 0.844 and the applying magnetic field strengths were 0, 1, and 3 kG, respectively. In this study the correlation coefficient, $R^2$, between thermal emissivity and alignment degree was 0.997. Therefore, it was concluded that the thermal emissivities are correlated with the alignment degree of the graphite flakes.

Thermal Shock Resistance of $Al_{2}O_{3}$- and Fe-$Al_{2}TiO_{5}$-based Castable Refractories

  • Liu, T.;Latella, B.A.;Bendeich, P.
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.345-351
    • /
    • 1998
  • Thermal shock resistance of $Al_2O_3$- and Fe-$Al_2TiO_5$-based Castable Refractories was studied using a central heating technique. Ring type specimens, 10mm thick and 20 and 100mm inner and outer diameters, respectively, were rapidly heated on the internal surface of the centre hole using a high power electrical heating element. The temperature field was measured experimentally and modelled using finite element analysis (FEA). The thermal stress field was also modelled using FEA. A radial notch was introduced to the ring specimens to enable calculation of the thermal stress intensity factors (SIF). A special LVDT device was incorporated in the thermal shock tester to monitor crack mouth opening displacement (COD). The thermal shock fracture initiation and crack propagation behaviour of the castable refractories were ascertained using the COD measurements and the fracture mechanics analysis data.

  • PDF

Principles and Applications of Non-Thermal Technologies for Meat Decontamination

  • Yewon Lee;Yohan Yoon
    • 한국축산식품학회지
    • /
    • 제44권1호
    • /
    • pp.19-38
    • /
    • 2024
  • Meat contains high-value protein compounds that might degrade as a result of oxidation and microbial contamination. Additionally, various pathogenic and spoilage microorganisms can grow in meat. Moreover, contamination with pathogenic microorganisms above the infectious dose has caused foodborne illness outbreaks. To decrease the microbial population, traditional meat preservation methods such as thermal treatment and chemical disinfectants are used, but it may have limitations for the maintenance of meat quality or the consumers acceptance. Thus, non-thermal technologies (e.g., high-pressure processing, pulsed electric field, non-thermal plasma, pulsed light, supercritical carbon dioxide technology, ozone, irradiation, ultraviolet light, and ultrasound) have emerged to improve the shelf life and meat safety. Non-thermal technologies are becoming increasingly important because of their advantages in maintaining low temperature, meat nutrition, and short processing time. Especially, pulsed light and pulsed electric field treatment induce few sensory and physiological changes in high fat and protein meat products, making them suitable for the application. Many research results showed that these non-thermal technologies may keep meat fresh and maintain heat-sensitive elements in meat products.

인슐레이션을 제거한 소형 초전도 회전자 디자인 (Design of a small size insulationless superconducting rotor)

  • 김광민;정성준;김경훈;김남원;박민원;유인근;박태준;김태원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.792-793
    • /
    • 2011
  • The purpose of this paper is to study the thermal and mechanical characteristics of HTS (high temperature superconductor) field magnet according to the design of a small size superconducting rotor without insulation. First, basic design data of superconducting rotor were acquired through electromagnetic analysis. Based on these data, analysis regarding mechanical and thermal characteristics of HTS field magnet was executed. Anisotropic condition was considered in the mechanical characteristics of HTS field magnet. Average values of specific heat and heat conductivity up to 30 K were used during the analysis of thermal characteristics. Analysis results show superior mechanical and thermal characteristics of insulationless HTS field magnet compared with insulated HTS field magnet.

  • PDF

질화탄소 표면층 및 열처리가 탄소 나노튜브 미세팁의 전계방출 및 장시간 안정성에 미치는 영향 (Effects of Carbon Nitride Surface Layers and Thermal Treatment on Field-Emission and Long-Term Stability of Carbon Nanotube Micro-Tips)

  • 노영록;김종필;박진석
    • 반도체디스플레이기술학회지
    • /
    • 제9권1호
    • /
    • pp.41-47
    • /
    • 2010
  • The effects of thermal treatment on CNTs, which were coated with a-$CN_x$ thin film, were investigated and related to variations of chemical bonding and morphologies of CNTs and also properties of field emission induced by thermal treatment. CNTs were directly grown on nano-sized conical-type tungsten tips via the inductively coupled plasma-chemical vapor deposition (ICP-CVD) system, and a-$CN_x$ films were coated on the CNTs using an RF magnetron sputtering system. Thermal treatment on a-$CN_x$ coated CNT-emitters was performed using a rapid thermal annealing (RTA) system by varying temperature ($300-700^{\circ}C$). Morphologies and microstructures of a-$CN_x$/CNTs hetero-structured emitters were analyzed by FESEM and HRTEM. Chemical composition and atomic bonding structures were analyzed by EDX, Raman spectroscopy, and XPS. The field emission properties of the a-$CN_x$/CNTs hetero-structured emitters were measured using a high vacuum (below $10^{-7}$ Torr) field-emission measurement system. For characterization of emission stability, the fluctuation and degradation of the emission current were monitored in terms of operation time. The results were compared with a-$CN_x$ coated CNT-emitters that were not thermally heated as well as with the conventional non-coated CNT-emitters.

Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity

  • Said, Samia M.;Abd-Elaziz, Elsayed M.;Othman, Mohamed I.A.
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.617-629
    • /
    • 2020
  • The purpose of this paper is to depict the effect of rotation and initial stress on a magneto-thermoelastic medium with diffusion. The problem discussed within memory-dependent derivative in the context of the three-phase-lag model (3PHL), Green-Naghdi theory of type III (G-N III) and Lord and Shulman theory (L-S). Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique. Numerical results for the field quantities given in the physical domain and illustrated graphically in the absence and presence of a magnetic field, initial stress as well as the rotation. The differences in variable thermal conductivity are also presented at different parameter of thermal conductivity. The numerical results of the field variables are presented graphically to discuss the effect of various parameters of interest. Some special cases are also deduced from the present investigation.