• 제목/요약/키워드: Thermal error model

검색결과 195건 처리시간 0.037초

볼 스크류 이송장치 열 에러 보상 시스템의 시뮬레이션 및 계산 방법에 관한 연구 (Study on Simulation and Calculation Method of Thermal Error Compensation System for a Ball Screw Feed Drive)

  • 허철수;최창;김래성;백권인;류성기
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.88-93
    • /
    • 2017
  • Due to the requirement of the development of the precision manufacturing industry, the accuracy of machine tools has become a key issue in this field. A critical factor that affects the accuracy of machine tools is the feed system, which is generally driven by a ball screw. Basically, to improve the performance of the feed drive system, which will be thermally extended lengthwise by continuous usage, a thermal error compensation system that is highly dependent on the feedback temperature or positioning data is employed in the machine tool system. Due to the overdependence on measuring technology, the cost of the compensation system and low productivity level are inevitable problems in the machine tool industry. This paper presents a novel feed drive thermal error compensation system method that could compensate for thermal error without positioning or temperature feedback. Regarding this thermal error compensation system, the heat generation of components, principal of compensation, thermal model, mathematic model, and calculation method are discussed. As a result, the test data confirm the correctness of the developed feed drive thermal error compensation system very well.

공작기계 열오차 모델의 최적 센서위치 선정 (Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools)

  • 안중용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

CNC 공작기계에서 열변형 오차 보정 시스템의 고장진단 및 복구 (Fault Diagnosis and Recovery of a Thermal Error Compensation System in a CNC Machine Tool)

  • 황석현;이진현;양승한
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.135-141
    • /
    • 2000
  • The major role of temperature sensors in thermal error compensation system of machine tools is improving machining accuracy by supplying reliable temperature data on the machine structure. This paper presents a new method for fault diagnosis of temperature sensors and recovery of faulted data to establish the reliability of thermal error compensation system. The detection of fault and its location is based on the correlation coefficients among temperature data from the sensors. The multiple linear regression model which is prepared using complete normal data is also used fur the recovery of faulted data. The effectiveness of this method was tested by comparing the computer simulation results and measured data in a CNC machining center.

  • PDF

수직형 선반의 평면 오차 민감도 분석 및 신뢰도 평가 (Sensitivity Analysis and Confidence Evaluation for Planar Errors of a Vertical Turning Center)

  • 여규환;양승환
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.67-75
    • /
    • 1998
  • Geometric and thermal errors are key contributors to the errors of a computer numerically controlled turning center. A planar error synthesis model is obtained by synthesizing 11 geometric and thermal error components of a turning center with homogeneous coordinate transformation method. This paper shows the sensitivity analysis on the temperature change, the confidence evaluation on the uncertainty Of measurement systems, and the error contribution analysis from the planar error synthesis model. Planar error in the z direction was very sensitive to the temperature change. and planar errors in the x and z directions were not affected by the uncertainty of measurement systems. The error contribution analysis ,which is applicable to designing a new turning center, was helpful to find the large error components which affect planar errors of the turning center.

  • PDF

기준물을 이용한 NC 공작기계의 오차규명 및 보상제어 (Error Identification and Compensation for NC Machine Tools Using the Reference Artifact)

  • 정성종
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.102-111
    • /
    • 2000
  • Methodology of volumetric error identification and compensation is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geo-metric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. A volumetric error compensation system based on IBM/PC is linked with a FANUC CNC controller to compensate for the identified volumetric error in machining workspace.

  • PDF

고속 CNC선반 이송계의 열변형 오차 해석

  • 윤원수;김수광;하재룡;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.263-268
    • /
    • 1997
  • Development of a high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of tool change time as well as repid travel time can enhance the productivity. However,the high speed feed drive system generates more heat in nature,which leads to thermal expansion that has adverse effects on the accuracy of machined part. The paper divides the feed drive system into the ball screw and guide way. For each part, the thermal behvior model is separtately developed to estimate the position error of the respective feed drive system that is caused by the thermal expansion. The modified lumped capacitance method is used to analyze the linear position error of the ball screw. The thermal deformation of guide way parts affects the straightness and angular error as well as linear position error. Finite element method is used to estimate the thermal behavior of these guide way parts. The effectiveness of the proposed models are verified through the experiments using laser interferometer.

기준물을 이용한 NC 공작기계의 체적오차 규명 (Volumetric Error Identification for NC Machine Tools Using the Reference Artifact)

  • 김경돈;정성종
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2899-2908
    • /
    • 2000
  • Methodology of volumetric error identification is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geometric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. The proposed method can speed up and simplify volumetric error identification processes.

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.

입자 강화 복합재의 등가 열전도 계수에 대한 연구 (A Study on Effective Thermal Conductivity of Particulate Reinforced Composite)

  • 이재곤
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.133-138
    • /
    • 2006
  • Effective thermal conductivity of particulate reinforced composite has been predicted by Eshelby's equivalent inclusion method modified with Mori-Tanaka's mean field theory. The predicted results are compared with the experimental results from the literature. The model composite is polymer matrix filled with ceramic particles such as silica, alumina, and aluminum nitride. The preliminary examination by Eshelby type model shows that the predicted results are in good agreements with the experimental results for the composite with perfect spherical filler. As the shape of filler deviates from the perfect sphere, the predicted error increases. By using the aspect ratio of the filler deduced from the fixed filler volume fraction of 30%, the predicted results coincide well with the experimental results for filler volume fraction of 40% or less. Beyond this fraction, the predicted error increases rapidly. It can be finally concluded from the study that Eshelby type model can be applied to predict the thermal conductivity of the particulate composite with filler volume fraction less than 40%.

  • PDF

열탄소성 구성방정식 적분을 위한 새로운 알고리즘 (A New Algorithm for the Integration of Thermal-Elasto-Plastic Constitutive Equation)

  • 이동욱;신효철
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1455-1464
    • /
    • 1994
  • A new and efficient algorithm for the integration of the thermal-elasto-plastic constitutive equation is proposed. While it falls into the category of the return mapping method, the algorithm adopts the three point approximation of plastic corrector within one time increment step. The results of its application to a von Mises-type thermal-elasto-plastic model with combined hardening and temperature-dependent material properties show that the accurate iso-error maps are obtained for both angular and radial errors. The accuracy achieved is because the predicted stress increment in a single step calculation follows the exact value closely not only at the end of the step but also through the whole path. Also, the comparison of the computational time for the new and other algorithms shows that the new one is very efficient.