• Title/Summary/Keyword: Thermal effect

Search Result 6,966, Processing Time 0.037 seconds

Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids (탄소 나노튜브 나노유체의 열전도도에 대한 연구)

  • Kim, Bong-Hun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.168-175
    • /
    • 2006
  • An experimental study was conducted to investigate the effect of the morphology of CNT on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using asteady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature, Although functionalized SWNT produiced a more stable and homogeneous suspension, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0 percent by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT, the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

  • PDF

Thermal Comfort Condition of Temperature and Humidity in Loess Interior Space

  • Kong, Sung-Hoon
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.129-135
    • /
    • 2004
  • The study was carried out through measuring the temperature and humidity of the indoor/outdoor space and the distribution of interior thermal condition, and investigating the effect of loess materials on human body. The purpose of this study is to analyze the change of dry bulb temperature and relative humidity and correlation of thermal reaction of human body with ASHRAE (American Society of Heating, Refrigerating and Air-conditioning) comfort chart in the loess interior space. In the view point of biomedical sciences, loess interior space provides optimum thermal conditions for human thermal sensation.

  • PDF

A training of SMA wire for stabilization of two-way behaviors and actuator application (형상기억합금 와이어의 거동 안정화를 위한 트레이닝과 작동기 응용)

  • Kim, Sang-Haun;Yang, Sung-Pil;Cho, Maeng-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.924-927
    • /
    • 2007
  • In this study, adaptation of two-way shape memory effect of SMA wire to the actuator is examined. Therefore the SMA characteristics which are training, material properties, response time at different thermal cycling rates are tested. During training, permanent deformation is accumulated till a certain number of cycle and then saturated. The amount of two-way strain is unchangeable over all cycle and the slope of strain(or stress)-temperature curve is slower as the increase of applied stress. The rate effect is observed resulted from the thermal distribution which heating profile differs from cooling as thermal cycling time. Using the estimated SMA properties, an experimental test for the simple smart wing is performed.

  • PDF

Experimental Test Numerical Simulation of SMA Characteristics and Device verification (형상기억합금 수치해석을 위한 특성 실험 및 작동기 응용)

  • Kim, Sang-Haun;Choi, Hyun-Ho;Cho, Maeng-Hyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.145-148
    • /
    • 2005
  • In this study, adaptation of two-way shape memory effect of SMA wire to the actuator is examined . Therefore the SMA characteristics which are training, material properties, response time at different thermal cycling rates are tested. During training, permanent deformation is accumulated till a certain number of cycle and then saturated. The amow1t of two-way strain is unchangeable over all cycle and the slope of strain(or stress)-temperature curve is slower as the increase of applied stress. The rate effect is observed resulted from the thermal distribution which heating profile differs from cooling as thermal cycling time. Using the estimated SMA properties, an experimental test for the simple smart wing is performed.

  • PDF

Effect of Alloying Elements on the Thermal Creep of Zirconium Alloys

  • Cheol Nam;Kim, Kyeong-Ho;Lee, Myung-Ho;Jeong, Yong-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.372-378
    • /
    • 2000
  • The effect of alloying elements on the creep resistance of Zr alloys was investigated using thermal creep tests that were performed as a part of advanced fuel cladding development. The creep tests were conducted at 40$0^{\circ}C$ and 150 MPa for 240 hr. A statistical model was derived from the relationship between the steady-state creep rate and the content of individual alloying elements. The creep strengthening effect decreased in the following sequence : Nb, Sn, Mn, Cr, Mo, Fe and Cu. The high creep resistance of Sn and the opposite effect of Fe on zirconium alloys seem to be associated with their lowering and enhancing, respectively, the self-diffusivity of the zirconium matrix.

  • PDF

Thermal Effect Modeling for AIGaN/GaN HFET on Various Substrate (AlGaN/GaN HFET의 기판에 따른 열효과 분석 모델링)

  • Park, Seung-Wook;Shin, Moo-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.221-225
    • /
    • 2001
  • In the paper, we report on the DC and Thermal effect of the GaN based HFET. A physics-based a model was applied and found to be useful for predicting the DC performance and Thermal effect of the GaN based HFET by Various substrate. The performance of device on the sapphire substrates is found to be significantly improve compared with that of a device with an sapphire substrate. The peak drain current of the device achieved at HFET on the SiC substrate

  • PDF

Thermal Effect Modeling for AlGaN/GaN HFET on Various Substrate (AlGaN/GaN HFET의 기판에 따른 열효과 분석 모델링)

  • 박승욱;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.221-225
    • /
    • 2001
  • In the paper, we report on the DC and Thermal effect of the GaN based HFET. A physics-based a model was applied and found to be useful for predicting the DC performance and Thermal effect of the GaN based HFET by Various substrate. The performance of device on the sapphire substrates is found to be significantly improve compared with that of a device with an sapphire substrate. The peak drain current of the device achieved at HFET on the SiC substrate

  • PDF

Thermal Ratchetting of the Conductive Adhesives Joints Subjected to the Thermal Cycles (전도성 접착제의 열경화 응력에 대한 해석)

  • 박주혁;서승호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.208-213
    • /
    • 2002
  • When a thermoset conductive adhesive joints are subjected to the thermal cycles, the thermal stresses are developed around the joints. Most of in-plane, hi-axial components of these residual stresses induces large tensile peel stresses and weakens adhesive joints. Also these stresses vary with thermal cycles, and result in thermal fatigue loading and debonding propagation. In this study, the thermal ratchetting effect in conductive adhesive joints are evaluated by the finite element analysis with the viscoelastic material model. In order to Investigate the relationship between thermal ratchetting and glass transition temperature, the mathematical material model has been developed experimentally by dynamic mechanical analysis. These material models are implemented to the finite element analysis with thermal loading cycles. And the stress profiles around the conductive adhesive joints are calculated. It has been observed that the thermal ratchetting occurs when the maximum temperature of thermal cycles is above the glass transition temperature. The peel and shear stress components increase as the thermal loading time increases. This will contributes to thermal fatigue fracture of the joints.

  • PDF

Evaluation of Thermal Environment Improvement Effect from Public Design Improvement Project on the Urban Street Space (도시가로공간의 공공디자인 개선사업에 따른 열환경 개선 효과 평가)

  • Baek, Sang-Hun;Shimizu, Aki;Kim, Hak-Yoon;Jung, Eung-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1105-1114
    • /
    • 2011
  • In this study, thermal environment improvements throughout public design improvement project on the urban street space were compared and evaluated. Thermo-Render 3.0, 3D-CAD based thermal environment simulation program, had been used for thermal environment improvement evaluations. Followings are the results. First, clayey blocks which have low heat transfer rate and cool island effect by trees and roof gardens brought cooling effects for buildings and surface of streets. Seconds, MRT values showed low levels because of low radiant mulching materials. Thirds, roof gardens contributed to reduce heat island effect since HIP levels were affected by decreasing heat storage effect of buildings from roof gardens. As a result, reducing heat storage effect throughout selecting and arranging proper materials which would not increase heat island potentials should be performed to improve heat island effects.

NOx Formation and Flame Structure in $CH_4/Air-CO_2$ Counterflow Diffusion Flames ($CH_4/Air-CO_2$ 대향류 확산화염의 NOx 생성 특성 및 화염구조)

  • Han, J.W.;Lee, S.R.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.949-955
    • /
    • 2000
  • Numerical study with detailed chemistry has been conducted to investigate the NOx formation and structure in $CH_4/Air-CO_2$ counterflow diffusion flames. The importance of radiation effect is identified and the role of $CO_2$ addition is addressed to thermal and chemical reaction effects, which can be precisely specified through the introduction of an imaginary species. Also NO separation technique is utilized to distinguish the contribution of thermal and prompt NO formation mechanisms. The results are as follows : The radiation effect is dominant at low strain rates and it is intensified by $CO_2$ addition. Thermal effect mainly contributes to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. It is noted that flame structure is changed considerably due to the addition of $CO_2$ in such a manner that the path of methane oxidation prefers to take $CH_4 {\rightarrow}CH_3{\rightarrow}C_2H_6{\rightarrow}C_2H_5$ instead of $CH_4 {\rightarrow}CH_3{\rightarrow}CH_2{\rightarrow}CH$. At low strain rate(a=10) the reduction of thermal NO is dominant with respect to reduction rate, but that of prompt NO is dominant with respect to total amount.

  • PDF