• Title/Summary/Keyword: Thermal damage

Search Result 925, Processing Time 0.024 seconds

Study of Driving and Thermal Stability of Anode-type Ion Beam Source by Charge Repulsion Mechanism

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.3
    • /
    • pp.47-51
    • /
    • 2018
  • We fabricated an anode-type ion beam source and studied its driving characteristics of the initial extraction of ions using two driving mechanisms: a diffusion phenomenon and a charge repulsion phenomenon. For specimen exposed to the ion beam in two methods, the surface impurity element was investigated by using X-ray photoelectron spectroscopy. Upon Ar gas injection for plasma generation the ion beam source was operated for 48 hours. We found a Fe 2p peak 5.4 at. % in the initial ions by the diffusion mechanism while no indication of Fe in the ions released in the charge repulsion mechanism. As for a long operation of 200 min, the temperature of ion beam sources was measured to increase at the rate of ${\sim}0.1^{\circ}C/min$ and kept at the initial value of $27^{\circ}C$ for driving by diffusion and charge repulsion mechanism, respectively. In this study, we confirmed that the ion beam source driven by the charge repulsion mechanism was very efficient for a long operation as proved by little electrode damage and thermal stability.

Structural assessment of reactor pressure vessel under multi-layered corium formation conditions

  • Kim, Tae Hyun;Kim, Seung Hyun;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.351-361
    • /
    • 2015
  • External reactor vessel cooling (ERVC) for in-vessel retention (IVR) has been considered one of the most useful strategies to mitigate severe accidents. However, reliability of this common idea is weakened because many studies were focused on critical heat flux whereas there were diverse uncertainties in structural behaviors as well as thermal-hydraulic phenomena. In the present study, several key factors related to molten corium behaviors and thermal characteristics were examined under multi-layered corium formation conditions. Thereafter, systematic finite element analyses and subsequent damage evaluation with varying parameters were performed on a representative reactor pressure vessel (RPV) to figure out the possibility of high temperature induced failures. From the sensitivity analyses, it was proven that the reactor cavity should be flooded up to the top of the metal layer at least for successful accomplishment of the IVR-ERVC strategy. The thermal flux due to corium formation and the relocation time were also identified as crucial parameters. Moreover, three-layered corium formation conditions led to higher maximum von Mises stress values and consequently shorter creep rupture times as well as higher damage factors of the RPV than those obtained from two-layered conditions.

RCD success criteria estimation based on allowable coping time

  • Ham, Jaehyun;Cho, Jaehyun;Kim, Jaewhan;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.402-409
    • /
    • 2019
  • When a loss of coolant accident (LOCA) occurs in a nuclear power plant, accident scenarios which can prevent core damage are defined based on break size. Current probabilistic safety assessment evaluates that core damage can be prevented under small-break LOCA (SBLOCA) and steam generator tube rupture (SGTR) with rapid cool down (RCD) strategy when all safety injection systems are unavailable. However, previous research has pointed out a limitation of RCD in terms of initiation time. Therefore, RCD success criteria estimation based on allowable coping time under a SBLOCA or SGTR when all safety injection systems are unavailable was performed based on time-line and thermal-hydraulic analyses. The time line analysis assumed a single emergency operating procedure flow, and the thermal hydraulic analysis utilized MARS-KS code with variables of break size, cooling rate, and operator allowable time. Results show while RCD is possible under SGTR, it is impossible under SBLOCA at the APR1400's current cooling rate limitation of 55 K/hr. A success criteria map for RCD under SBLOCA is suggested without cooling rate limitation.

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

A Study on the Thermal Stresses of the Glass Lens Mold Using in Progressive GMP Process (순차이송 GMP 방식용 유리렌즈 금형의 열응력에 관한 연구)

  • Chang, S.H.;Lee, Y.M.;Shin, G.H.;Yoon, G.S.;Jung, W.C.;Jung, T.S.;Heo, Y.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.289-292
    • /
    • 2007
  • To prevent the damage of glass lens molds and deterioration of glass lenses using in progressive GMP process, a thermal stress and a deformation of the glass lens molds at forming temperature should be considered in the design step. In this study, as a fundamental study to develop a multi cavity mold used in an aspheric glass lens molding, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally, using analysis results, we estimated the thermal stress in a glass lens mold and predicted a modified height of guide ring that determines the forming height of a glass lens.

  • PDF

Creation of Diamond/Molybdenum Composite Coating in Open Air

  • Ando, Yasutaka;Tobe, Shogo;Tahara, Hirokazu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1313-1314
    • /
    • 2006
  • For improvement of wear resistance property of atmospheric thermal plasma sprayed molybdenum (Mo) coating, diamond deposition on the atmospheric plasma sprayed molybdenum coating by the combustion flame chemical vapor deposition (CFCVD) has been operated. In this study, to diminish the thermal damage of the substrate during operation, a thermal insulator was equipped between substrate and water-cooled substrate holder. Consequently, diamond particles could be created on the Mo coating without fracture and peeling off. From these results, it was found that this process had a high potential in order to improve wear resistance of thermal sprayed coating.

  • PDF

Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test (압입시험법에 의한 YSZ 층상 열차폐 코팅재의 기계적 거동)

  • Lee, Dong-Heon;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.396-403
    • /
    • 2011
  • In this study, we investigated the mechanical behaviors of layered thermal barrier coatings by indentations. Various single and double-layered thermal barrier coatings were deposited by air plasma spray process using different type of commercialized YSZ (Yttria stabilized zirconia) starting powders. Indentation stress-strain curve, load-displacement curve and hardness of the single and the double-layered thermal barrier coatings were obtained experimentally and analyzed. The indentation damages at the same loads were compared, and thus, the results depend on the structure of each coating. The result indicates improvement in damage resistances from tailoring of layered structures in the component of gas turbine system is expected.

A study on the shapes of thermal corrosion in sandwich panel (샌드위치 패널의 열적 손상에 의한 부식 형상에 관한 연구)

  • Kim, Hyeon-Dong
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.3 no.1
    • /
    • pp.43-46
    • /
    • 2003
  • In this experimental report, We introduce an idea of thermal corrosion in sandwich panel. In brief, Because the structures of sandwich panel are easily collapsed by thermal damage caused by a fire, it is very difficult to investigate a point and origin of fire. Therefore, If the shapes of thermal corrosion are reconstructed according to change of temperature and lapse time by experiment in sandwich panel, it is very simple task that fire scene investigators search for a point and origin of fire. As a result, we present the difference of thermal corrosion between samples which are applied heat by many-sided variable, such as temperature, heating time, lapse time, humidity, and others.

  • PDF

The effects of thermal relaxation times in living tissues under the TPL bio-heat model with experimental study

  • Ibrahim A. Abbas;Aboelnour Abdalla;Fathi Anwar;Hussien Sapoor
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.31-42
    • /
    • 2023
  • In the present article, the effects of three thermal relaxation times in living tissue under the three-phaselag (TPL) bioheat model are introduced. Using the Laplace transforms, the analyticalsolution of the temperature and the resulting thermal damagesin living tissues are obtained. The experimental data are used to validate the analytical solutions. By the formulations of Arrhenius, the thermal damage of tissue is estimated. Numerical outcomes for the temperature and the resulting of thermal damages are presented graphically. The effects of parameters, such as thermalrelaxation times, blood perfusion rate on tissue temperature are also discussed in detail.

Nonlocal heat conduction approach in biological tissue generated by laser irradiation

  • Abbas, Ibrahim A.;Abdalla, Aboelnour;Sapoor, Hussien
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • A novel nonlocal model with one thermal relaxation time is presented to investigates the thermal damages and the temperature in biological tissues generated by laser irradiations. To obtain these models, we used the theory of the non-local continuum proposed by Eringen. The thermal damages to the tissues are assessed completely by the denatured protein ranges using the formulations of Arrhenius. Numerical results for temperature and the thermal damage are graphically presented. The effects nonlocal parameters and the relaxation time on the distributions of physical fields for biological tissues are shown graphically and discussed.