• 제목/요약/키워드: Thermal cycling test

검색결과 135건 처리시간 0.023초

광중합형 수복용 복합레진의 기계적 성질에 미치는 수중침적과 Thermal Cycling의 영향 (Effect of Immersion in Water and Thermal Cycling on the Mechanical Properties of Light-cured Composite Resins)

  • 배태성;김태조;김효성
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권3호
    • /
    • pp.327-336
    • /
    • 1996
  • This study was performed to investigate the effec% of immersion in water and thermal cycling on the mechanical peoperties of light cured restorative composite resins. Five commerically available light-cured composite resins(Photo Clearfil A : CA, Lite-Fil A . LF, Clearril Photo Posterior CP, Prisms AP.H.. PA, 2100 : ZH) were unto The specimens of 12 m in diameter and 0.7 m in thickness were made, and an immersion in $37^{\circ}C$ water for 7 days and a thermal cycling of 1000 cycles at 15 second dwell time each in $5^{\circ}C$ and $55^{\circ}C$ baths were performed. Biaxial flexure test was conducted using the ball-on-three-ball method at the crosshead speed of 0.5mm/min. In order to investigate the deterioration of composite resins during the thermal cycling test, Weibull analysis for the biaxial flexure strengths was done. Fracture surfaces and the surfaces before and after the thermal cycling test were examined by SEM. The highest Weibull modulus value of 10.09 after thermal cycling tests which means the lowest strength variation, was observed in the CP group, and the lowest value of 4.47 was obsered in the LF Group. Biaxial flexure strengths and Knoop hardness numbers significantly decreased due to the thermal cycling ($\textit{p}$< 0.01), however, they recovered when specimens were drie4 The highest biaxial flexure strength of 125.65MPa was observed in the ZH group after the thermal cycling test, and the lowest value of 64.86MPa was observed in the CA group. Biaxial flexure strengths of ZH and CP groups were higher than those of PA, CF, and CA groups after thermal cycling test($\textit{p}$< 0.05). Knoop hardness numbers of CP group after the thermal cycling test was the highest(95.47 $\pm$ 7.35kg/$mm^2$) among the samples, while that of CA group was the lowest(30.73 $\pm$ 2.58kg/$mm^2$). Knoop hardness numbers showed the significant differences between the CP group and others after the thermal cycling test(($\textit{p}$< 0.05). Fracture surfaces showed that the composite resin failure developed along the matrix resin and the filler/resin interface region, and the cracks propagated in the conical shape from the maximum tensile stress zone.

  • PDF

시효처리와 thermal cycling이 치관전장용 복합레진의 2축굽힘강도에 미치는 영향 (EFFECTS OF AGING AND THERMAL CYCLING ON THE BIAXIAL FLEXURE STRENGTH OF VENEERING RESIN COMPOSITES FOR CROWN)

  • 정관호;하일수;송광엽
    • 대한치과보철학회지
    • /
    • 제37권5호
    • /
    • pp.597-606
    • /
    • 1999
  • This study was performed to evaluate the effect of aging and thermal cycling on the biaxial flexure strength of low commercially available veneering resin composites for crown(Dentacolor : DC, Artglass : AG, Esternia : ET and Targis : TG). Disc specimens were fabricated in a teflon mold giving 12mm in diameter and 1mm in thickness. All samples were divided into 4 groups. Group 1 was dried in a dessicator at $25^{\circ}C$ for 30 days. Group 2 was immersed in distilled water at $37^{\circ}C$ for 30 days. Group 3 was immersed in distilled water at $65^{\circ}C$ for 30 days. Group 4 was subjected to 10,000 thermal cycles between $5^{\circ}C\;and\;55^{\circ}C$, and the immersion time in each bath was 15 seconds per cycle. Biaxial flexure test was conducted using the ball-on-three-ball method at the cross head speed of 0.5mm/min and fracture surfaces were observed with scanning electoron microscope. The results obtained were summarized as follows; 1. Weibull modulus values, except for the AG group, decreased after thermal cycling treatment. 2. Biaxial flexure strength values of aging group at $37^{\circ}C$ were the lowest in all sample groups. Except for the DC group, strength values were significantly decreased for the drying group. 3. After thermal cycling test, the highest value of biaxial flexure strength of 188.8 MPa was observed in the ET group and the lowest value of 73.2 MPa was observed in the DC group. The strength values showed the significant differences in each group (p<0.05). 4. Observation of surfaces after thermal cycling test revealed the ditching in the part of surrounding large fillers.

  • PDF

Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior

  • Lee, Dong Heon;Kang, Nam Kyu;Lee, Kee Sung;Moon, Heung Soo;Kim, Hyung Tae;Kim, Chul
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.314-322
    • /
    • 2017
  • This study investigates changes in the mechanical behavior, such as changes in indentation load-displacement curve, wear resistance and contact fatigue resistance of thermal barrier coatings (TBCs) by thermal cycling test and thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/superalloy are prepared; the highest temperature applied during thermal durability test is $1350^{\circ}C$. The results indicate that the porous TBCs have relatively longer lifetime during thermal cycling and thermal shock tests, while denser TBCs have relatively higher wear and contact fatigue resistance. The mechanical behavior is influenced by sintering of the TBCs by exposure to high temperature during tests.

리튬 2차 전지용 Li[Co0.1Ni0.15Li0.2Mn0.55]O2 양극물질의 안정성 고찰 (Stability of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 Cathode Material for Lithium Secondary Battery)

  • 박용준
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.443-449
    • /
    • 2007
  • The structural and thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ electrode during cycling process was studied. The sample was prepared by simple combustion method. Although there were irreversible changes on the initial cycle, O3 stacking for $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ structure was retained during the first and subsequent cycling process. Impedance of the test cell was decreased after the first charge-discharge process, which would be of benefit to intercalation and deintercalation of lithium ion on subsequent cycling. As expected, cycling test for 75 times increased impedance of the cell a little, instead, thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ was improved. Moreover, based on DSC analysis, the initial exothermic peak was shifted to high temperature range and the amount of heat was also decreased after cycling test, which displayed that thermal stability was not deteriorated during cycling.

Micro-cracks에 의한 PV 모듈의 전기적 특성 분석 (The analysis of electrical characteristics with Micro-crack in PV module)

  • 송영훈;지양근;;강기환;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.25-30
    • /
    • 2011
  • In this paper, we analyzed the electrical characteristics with Micro-cracks in Photovoltaic module. Micro cracks are increasing the breakage risk over the whole value chine from the wafer to the finished module, because the wafer or cell is exposed to mechanical stress. And The solar cells have to with stand the stress under out door operation in the finished module. Here the mechanical stress is induced by temperature changes and mechanical loads from wind and snow. So, we experimentally analyze the direct impact of micro-cracks on the module power and the consequences after artificial aging. The first step, we made micro-cracks in PV module by mechanical load test according to IEC 61215. Next, PV modules applied the thermal cycling test, because micro-cracks accelerated aging by thermal cycling test, according to IEC61215. Before every test, we checked output and EL image of PV module. As the result of first step, we detected little power loss(0.9%). But after thermal cycling test increased power loss about 3.2%.

  • PDF

플립 칩 BGA 솔더접합부의 열사이클링 피로해석 (Thermal Cycling Fatigue Analysis of Flip-Chip BGA Solder Joints)

  • 김경섭;유정희;김남훈;장의구;임희철
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 추계기술심포지움논문집
    • /
    • pp.27-32
    • /
    • 2002
  • In this paper, global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. It was estimated by the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life of results was obtained at the thermal cycling testing condition of -65℃ ∼ 150℃. It was increased about 3.5 times in comparison with that of 0℃ ∼ 100℃. As the change of pad structure at the same other conditions, the fatigue life of SMD structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF

Cryogenic Thermal Cycling Test on IGRINS cross-disperser VPH Grating

  • 정현주;임주희;이성호;;박수종;육인수
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.156-156
    • /
    • 2011
  • VPH (Volume Phase Hologram) grating is one of the transmission gratings and is known as its remarkable efficiency (>90%). It has two different densities of gelatins causing interference patterns. The VPH grating is favored in many astronomical instruments these days and also IGRINS, which is up coming near infrared high-resolution spectroscope expected to see the first light next year, uses the VPH grating as its cross-disperser. The infrared astronomical instruments operate at cryogenic temperature (~100K) in order to cut down thermal noise and the optical components of IGIRNS will be operated at 130K. The VPH grating is sandwiched in between fused silica or glass and glued together using optical adhesive. IGRINS is expected to go through 50 times of thermal cycling in 10 years including the performance test and this research is to check whether the physical characteristic such as the adhesion or dichromatic gelatin does not break and change from the several cryogenic thermal cycling. The two identical test gratings provided from Kaiser Optical System, Inc. are used in this test. One VPH grating is cooled down to 100K for 2 hours with maximum dT/dt = 5 and warmed up to the room temperature and another grating is kept stored in the room temperature and used as a control sample. In order to check the change, we inspected the grating with eyes and checked its efficiency and transmission at the room temperature every 10 cycling. From the 40 times of cryogenic temperature cool down cycling, the VPH grating showed no signs of change within the error compared to the control sample. We concluded the VPH grating is durable through several cryogenic thermal cycling.

  • PDF

Repair bond strength of composite resin to zirconia restorations after different thermal cycles

  • Cinar, Serkan;Kirmali, Omer
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권5호
    • /
    • pp.297-304
    • /
    • 2019
  • PURPOSE. This in vitro study investigated the repair bond strength of the zirconia ceramic after different aging conditions. MATERIALS AND METHODS. In order to imitate the failure modes of veneered zirconia restorations, veneer ceramic, zirconia, and veneer ceramic-zirconia specimens were prepared and were divided into 4 subgroups as: control ($37^{\circ}C$ distilled water for 24 hours ) and 3000, 6000, 12000 thermal cycling groups (n=15). Then, specimens were bonded to composite resin using a porcelain repair kit according to the manufacturer recommendation. The repair bond strength (RBS) test was performed using a universal testing machine (0.5 mm/min). Failure types were analyzed under a stereomicroscope. Two-way ANOVA and Bonferroni test were used for statistical analysis. RESULTS. The RBS values of zirconia specimens were statistically significant and higher than veneer ceramic and veneer ceramic-zirconia specimens in control, 3000 and 6000 thermal cycling groups (P<.05). When 12000 thermal cycles were applied, the highest value was found in zirconia specimens but there was no statistically significant difference between veneer ceramic and veneer ceramic-zirconia specimens (P>.05). Veneer ceramic specimens exhibited cohesive failure types, zirconia specimens exhibited adhesive failure types, and veneer ceramic-zirconia specimens exhibited predominately mixed failure types. CONCLUSION. Thermal cycling can adversely affect RBS of composite resin binded to level of fractured zirconia ceramics.

탄소/고분자 복합재료의 극저온-고온 싸이클링 (CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON/POLYMER COMPOSITES)

  • Yeh, Byung-Hahn;Won, Yong-Gu
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.38-42
    • /
    • 2002
  • An apparatus was developed to repetitively apply a $-196^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen ($LN_2$) 400 times. Ply-by-ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at $120^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies fellowed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5%.

  • PDF

왕복선 연료탱크 적용을 위한 탄소/고분자 복합재료의 극저온-고온 싸이클링 (CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON / POLYMER COMPOSITES FOR RESUABLE LAUNCH VEHICLE CRYOGENIC TANKS)

  • 예병한;원용구
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.151-155
    • /
    • 2003
  • An apparatus was developed to repetitively apply a -196 $^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen (L$N_2$) 400 times. Ply-by-Ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at 120 $^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies followed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5 %.

  • PDF