• Title/Summary/Keyword: Thermal cross-section

Search Result 256, Processing Time 0.028 seconds

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.

Evaluation of Effective Temperature for Estimate Design Thermal Loads in Steel Deck of Steel Box Girder Bridges (강상자형교의 강바닥판에서 설계온도하중을 위한 유효온도 산정)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Choi, Chul-Ho;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.77-87
    • /
    • 2013
  • A present LSD (limited state design) code for temperature load in the domestic bridge design has applied a uniform standard for various bridge types. In this study, in order to calculate the effective temperature, a specimen of steel box girder bridge section with real size dimension was manufactured. For a year, the temperature data were measured at the 18 point in steel deck of steel box girder bridges specimen. Effective temperature within the cross section according to atmospheric temperature was calculated by this experiment data. The analyzed results were very similar correlation when compared with the effective temperature of the Euro Code. Therefore, the effective temperature which calculated based on the present data could be used as the basic data in order to present to the appropriate design criteria for the thermal loads on the domestic bridge design.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

  • Kim, Jae Woong;Jang, Beom Seon;Kang, Sung Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.245-256
    • /
    • 2014
  • I-core sandwich panel that has been used more widely is assembled using high power $CO_2$ laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories

  • Ebrahimi, Farzad;Rostami, Pooya
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.495-504
    • /
    • 2018
  • The current study is dedicated to study the thermal effects of wave propagation in beams, reinforced by carbon nanotubes (CNT). Beams, made up of carbon nanotube reinforced composite (CNTRC) are the future materials in various high tech industries. Herein a Winkler elastic foundation is assumed in order to make the model more realistic. Mostly, CNTs are pervaded in cross section of beam, in various models. So, it is tried to use four of the most profitable reconstructions. The homogenization of elastic and thermal properties such as density, Yong's module, Poisson's ratio and shear module of CNTRC beam, had been done by the demotic rule of mixture to homogenize, which gives appropriate traits in such settlements. To make this investigation, a perfect one, various shear deformation theories had been utilized to show the applicability of this theories, in contrast to their theoretical face. The reigning equation had been derived by extended Hamilton principle and the culminant equation solved analytically by scattering relations for propagation of wave in solid bodies. Results had been verified by preceding studies. It is anticipated that current results can be applicable in future studies.

Environmental Fatigue Evaluation for Thermal Stratification Piping of Nuclear Power Plants (열성층을 포함하는 원자력발전소 배관의 환경피로평가)

  • Kim, Taesoon;Kim, Kyuhyung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.164-169
    • /
    • 2018
  • A detailed fatigue evaluation procedure was developed to mitigate the excessive conservativeness of the conventional environmental fatigue evaluation method for the pressurizer spray line elbow of domestic new nuclear power plants. The pressurizer spray line is made of austenitic stainless steel, which is relatively sensitive to the environmentally assisted fatigue, and has a low degree of design margin in terms of environmentally assisted fatigue due to the thermal stratification phenomenon on the pipe cross section as a whole or locally. In this study, to meet the environmental fatigue design requirements of the pressurizer spray line elbow, the new environmental fatigue evaluation has been performed, which used the ASME Code NB-3200-based detailed fatigue analysis and the environmental fatigue correction factor instead of the existing NB-3600 evaluation method. As a result, the design requirements for environmentally assisted fatigue were met in all parts of the pressurizer spray line elbow including the fatigue weakened zones by thermal stratification.

Reactive ion Etching Characterization of SiC Film Deposited by Thermal CVD Method for MEMS Application (MEMS 적용을 위한 Thermal CVD 방법에 의해 증착한 SiC막의 반응성 이온 Etching 특성 평가)

  • 최기용;최덕균;박지연;김태송
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.299-304
    • /
    • 2004
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of 100$0^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using SF$_{6}$/O$_2$ and CF$_4$/O$_2$ gas mixture. Etch rate has been investigated as a function of oxygen concentration in the gas mixture, rf power, working pressure and gas flow rate. Etch rate was measured by surface profiler and FE-SEM. SF$_{6}$/O$_2$ gas mixture showed higher etch rate than CF$_4$/O$_2$ gas mixture. Maximum etch rate appeared at RF Power of 450W. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observe

Reactive ion etching characterization of SiC film deposited by thermal CVD method for MEMS application (MEMS 적용을 위한 thermal CVD 방법에 의해 증착한 SiC막의 etching 특성 평가)

  • Choi, Gi-Yong;Choi, Duck-Kyun;Park, Ji-Yeon;Kim, Tae-Song
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.868-871
    • /
    • 2003
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability. Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of $1000^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using $SF_6/O_2$ and $CF_4/O_2$ gas mixture. Etch rate have been investigated as a function of oxygen concentration in the gas mixture, RF power, and working pressure. Etch rate was measured by surface profiler and FE-SEM. $SF_6/O_2$ gas mixture has been shown high etch rate than $CF_4/O_2$ gas mixture. Maximum etch rate appeared at 450W of RF power. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observed.

  • PDF

Thermal stress analysis of the KSTAR vacuum vessel during bake-outs (KSTAR 진공용기의 베이킹시 열응력해석)

  • 인상렬;윤병주;조승연
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.285-292
    • /
    • 1998
  • The vacuum vessel of the KSTAR tokamak has a so large poloidal cross- section that workers can enter into the inside the vessel. To produce a clean plasma with low impurity concentrations it is planned that the whole vessel including plasma facing components will be baked out at $350^{\circ}C$ and the base pressure of the vessel will be kept in the range of ultra high vacuum. Large thermal stresses are expected during bake-outs to a three-dimensionally complex structure of the vessel, consequent ununiformity of the temperature distribution and support systems to resist forces acting on the vessel. In this report variations of the thermal stress according to temperature gradients on the vessel and constraint conditions of supporting structures are studied and some possible counterplans are discussed.

  • PDF

Fabrication and Characteristics of Continuous W-Cu FGM by SPS/Infiltration Process (SPS/용침 공정에 의한 W-Cu연속경사기능재료의 제초와 특성)

  • 신철균;석명진;오승탁;김지순;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.158-164
    • /
    • 2004
  • W-Cu composite has been used for the applications requiring both high strength, good thermal and electrical conductivity. A graded combination of W and Cu will reduce thermal stress concerned with heat conduction, maintaining good thermal conductivity and high mechanical strength. In the present work, an attempt was made to fabricate continuous W-Cu FGM by preparing the graded porous structure of W skeleton using spark plasma sintering (SPS) process followed by infiltrating Cu. The graded porous structure was prepared at 150$0^{\circ}C$ for 60s under pressure of 15MPa by SPS process using a graphite mold with varying crr)ss section in the longitudinal direction. Infiltration of Cu was performed at 115$0^{\circ}C$ for 1 hour under $H_2$. W-Cu composite with graded Cu composition of 14 to 27 wt% was finally prepared. In this process the gradient of composition could be conveniently controlled by varying the gradient of cross sectional area of graphite mold, temperature and pressure.

PCM/Nylon6 복합사 염착특성

  • Lee, Jun-Hee;Kim, Hyung-Joo;Yim, Sang-Hyun;Im, Jung-Nam;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.35-35
    • /
    • 2011
  • Phase change material(PCM) has thermal energy storage and been attracted attention. Latent heat of the organic PCM can keep maintaining temperature when the change of outside energy conditions influence to PCM. Thus, many researchers have interested to thermal energy storage ability and investigated to applications such as thermal storage of solar energy, bioclimatic building, icebank, medical application, clothing industry and so on. Among the many applications, investigation of the PCM in clothing industry is also important because the people has interest functional factor called health-care in the clothing. In addition, PCM can give them mild environment condition such suitable temperature control or humidity. To fabrics, the PCM has various methods such as microcapsule, padding and modified cross-section formation(Sheath/core). Sheath core PCM fabric has a better benefit of durability than other method. However, PCM sheath/core spinning is difficult. In addition, dyeing property is important to use clothing industry due to visual images. In this study, we investigated dyeing properties of Nylon/PCM sheath/core fabrics. Especially, we observed the relation between dyeing property and PCM including ratio. Various temperature and pH conditions were also studied to optimize dyeing properties as acid dye.

  • PDF