• Title/Summary/Keyword: Thermal creep

Search Result 258, Processing Time 0.024 seconds

Evaluation on Shrinkage Strain and Mechanical Properties of High Strength Concrete at Elevated Temperature (가열을 받은 고강도 콘크리트의 역학적 특성 및 수축변형 평가)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Seo, Won-Woo;Baek, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.220-221
    • /
    • 2017
  • In this study, the thermal strain of high strength concrete with the compressive strength of 70, 80, 100MPa were measured under 33% of compressive strength loading condition. As results, it is considered that shrinkage strain of high strength concrete become grater at the elevated temperatures.

  • PDF

AC Accelerated Ageing Characteristics of Zinc Oxide Varistors for the Station Class Lightning Surge Arresters (발변전급 피뢰기용 산화아연소자의 AC 가속열화특성)

  • Cho, Han-Goo;Yoon, Han-Soo;Kim, Suk-Soo;Han, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.315-316
    • /
    • 2005
  • This paper describes the AC accelerated ageing characteristics of zinc oxide varistors for the station class lightning surge arresters. ZnO varistors whose rated voltage were 3.27kV, 4.00kV, and 6.00kV were manufactured with general ceramic production methods. The power loss of sample A varistors rapidly increased and eventually showing the thermal run-away, but sample B and sample C varistors exhibited negative creep phenomena in power losses during the test.

  • PDF

Synthesis of Ceramic Protective Coatings for Chemical Plant Parts Operated in Hi-temperature and Corrosive/Erosive Environment

  • Son, M.C.;Park, J.R.;Hong, K.T.;Seok, H.K.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Some feasibility studies are conducted to produce an advanced ceramic coating, which reveals superior chemical and mechanical strength, on metal base structure used in chemical plant. This advanced coating on metallic frame can replace ceramic delivery pipe and reaction chamber used in chemical plant, which are operated in hi-temperature and corrosive/erosive environment. An dual spraying is adopted to reduce the residual stress in order to increase the coating thickness and the residual stress is estimated by in-situ manner. Then new methodology is tried to form special coating of yttrium aluminum garnet(YAG), which reveals hi-strength and low-creep rates at hi-temperature, superior anti-corrosion property, hi-stability against Alkali-Vapor corrosion, and so on, on iron base structure. To verify the formation of YAG during thermal spraying, XRD(X ray diffraction) technique was used.

고온 열천이하중을 받는 액체금속로 Y-구조물에 대한 크립효과

  • Kim, Jong-Beom;Lee, Hyeong-Yeon;Yoo, Bong;Kwak, Dae-Young;Lim, Yong-Taek
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.659-665
    • /
    • 1995
  • 액체금속로는 기존의 가압경수로와는 달리 55$0^{\circ}C$ 정도의 고온에서 운전이 되므로 고온 열응력이 중요한 문제로 대두되며 따라서 고은에서의 크립(Creep) 변형, 반복되는 기동과 정지 등으로 인한 되풀이 소성변형, 라체팅(Ratchetting), 크립과 소성의 상호작용 및 크립과 피로의 상호작용 등의 평가에 대한 기술 확립과 고온구조물에 대한 우리의 독자적인 설계방법을 개발하는 것이 필요하다 본 연구에서는 범용 유한요소해석코드인 ABAQUS의 축대칭 요소를 이용해서 액체 금속로 원자로용기와 이에 부착된 열소매(Thermal sleeve)를 Y-형태의 구조물로 모델링하여 반복되는 열천이하중에 대한 비탄성 구조해석을 수행하고 크립효과에 대한 영향을 분석하였다. 해석결과 액체금속로와 같은 고온구조물에 대하여 반복 열천이 하중과 고온 지속시간이 유발하는 크립효과가 크게 나타남을 알 수 있었다.

  • PDF

Durability Test for the Expansion Joint of High-Speed Railway Bridge (고속철도 교량 신축이음장치의 내구성 실험)

  • 김병석;곽종원;신호상;김영진;박성용;장익순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.894-899
    • /
    • 1998
  • To absorb the deformation of live load, thermal gradient, shrinkage and creep in bridge structures and general structures, expansion joint has to be established. Especially expansion joint for high-speed railway bridge has to accomodate the static and dynamic forces and it not only has the durability of itself but also maintain the durability of structure by preventing the leakage of water. The actual used product of expansion joint for high-speed railway bridge is only ones made in France, Germany and Japan. In this study, the development process and test results of developed expansion joint are introduced which has the functional operation and durability enough to apply to high-speed railway bridges, roadway bridges and general structures. The tests consist of fatigue-durability test of 3 million times by high-speed rail load, leakage test and jack-up test for verifying the possibility of exchanging it. The performance of developed expansion joint satisfy the specification of Korea High Speed Rail Construction authority.

  • PDF

Evaluation of Thermal Effect on the Concrete Pylon of a Cable-stayed Bridge (사장교 콘크리트 주탑의 온도영향 평가)

  • Park Jong Chil;Kim Young Jin;Choi Sung Kwon;Lee Chung Pyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.355-358
    • /
    • 2005
  • In this paper, an actual behavior of the pylon of Seohae Grand Bridge which is a cable stayed bridge and has been constructed 4 years ago was analyzed by using data acquisition system. As a result, the pylon of cable stayed bridge behaved normally with respect to the change of temperature. The annual displacement of the top of pylon(PY1) ranged from -71.4mm to +181.7mm in the longitudinal direction of the bridge. In the case of the longitudinal displacement, the displacement of PY1 was bigger than that of PY2 because PY1 is movable and PY2 is fixed in terms of the constraint condition of super structure. For the long term, PY1 will be sloped gently to the direction of Dangjin and PY2 will be also sloped gently to the direction of Pyongtaek by the effect of creep and shrinkage in the case of the longitudinal direction. The result of structural analysis showed good agreement with the result mentioned above.

  • PDF

Layered model of aging concrete. General concept and one-dimensional applications

  • Truty, Andrzej;Szarlinski, Jan;Podles, Krzysztof
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.703-721
    • /
    • 2016
  • A novel approach to modeling concrete behavior at the stage of its maturing is presented in this paper. This approach assumes that at any point in the structure, concrete is composed of a set of layers that are activated in time layer by layer, based on amount of released heat that is produced during process of the concrete's maturing. This allows one to assume that each newly created layer has nominal stiffness moduli and tensile/compressive strengths. Hence introduction of explicit stiffness moduli and tensile/compressive strength dependencies on time, or equivalent time state parameter, is not needed. Analysis of plain concrete (PC) and reinforced concrete (RC) structures, especially massive ones, subjected to any kind of straining in their early stage of existence, mostly due to external loads but especially by thermal loading and shrinkage, is the goal of the approach. In this article a simple elasto-plastic softening model with creep is used for each layer and a general layered model behavior is illustrated on one-dimensional (1D) examples.

고속철도 교량 신축이음장치의 내구성 실험

  • 김병석;곽종원;신호상;김영진;박성용;장익순
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.24-29
    • /
    • 1998
  • To absorb the deformation of ,external live load, thermal gradient, shrinkage and creep in bridge structures and general structures, expansion joint has to be established. Especially expansion joint for high-speed railway bridge has to accomodate the static and dynamic forces and it not only has the durability of itself but also maintain the durability of structure by preventing the leakage of water. The actual used product of expansion joint for high-speed railway bridge is only ones made in France, Germany and Japan. In this study, the development process and test results of developed expansion joint are introduced which has the functional operation and durability enough to apply to high-speed railway bridges, roadway bridges and general structures. The tests consist of fatigue-durability test of 3 million times by high-speed rail load, leakage test and jack-up test for verifying the possibility of exchanging it. The performance of developed expansion joint satisfy the specification of Korea High Speed Rail Construction Authority.

  • PDF

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy (Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가)

  • Jung, Sujin;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.