• Title/Summary/Keyword: Thermal cracks

Search Result 446, Processing Time 0.027 seconds

Estimation of Thermal Stresses Induced in Polymeric Thin Film Using Boundary Element Methods

  • Lee, Sang-Soon
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.27-33
    • /
    • 2002
  • The residual thermal stresses at the interface corner between the elastic substrate and the viscoelastic thin film due to cooling from cure temperature down to room temperature have been studied. The polymeric thin film was assumed to be thermorheologically simple. The boundary element method was employed to investigate the nature of stresses on the whole interface. Numerical results show that very large stress gradients are present at the interface comer and such stress singularity might lead to edge cracks or delamination.

  • PDF

Horizontal Cracks in Continuously Reinforced Concrete Pavement Structures (연속철근콘크리트 도로포장 구조물의 내부 수평균열)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Kwon, Soon-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.425-429
    • /
    • 2006
  • Horizontal cracks at the mid-depth of concrete slabs were observed at a section of the continuously reinforced concrete pavement(CRCP) structures on the Korea Highway Corporation's Test Road. To investigate the existence and the extent of horizontal cracks in the concrete slab, a number of cores were taken from the section of CRCP. To identify the causes of horizontal cracks, numerical analyses were conducted. Several variables relative to design, material, and environment were considered in the studies to evaluate possible causes of horizontal cracking. A numerical model of CRCP was developed using the finite element discretization, and the shear and normal tensile stress distributions in CRCP were investigated with the model. Numerical analysis results show that the maximum shear and normal tensile stresses develop near the depth of steel bars at transverse cracks. If those maximum stresses reach the strength of concrete, horizontal cracks occur. The maximum stresses become higher as the environmental loads, coefficient of thermal expansion of concrete, and elastic modulus of concrete increase.

A Study on the Meassurement Technology of Thermal Stress in Massive Concrete Structure (매스콘크리트구조물에서의 온도응력 측정기법에 관한 연구)

  • 강석화;정철헌;이용호;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.71-76
    • /
    • 1994
  • Recently, constructions of huge reinforced concrete structures such as nuclear power stations have been increased. When massive concrete is placed, cracking due to the hydration heat of cement is recognized as a major problem. The development of thermal stress is influenced by the structure shape and the constraint conditions, and cracks usually occure from tensile stresses which developed due to temperature drop. In this study a protocol specimen is made to examine the distribution of temperature and thermal stress of reaction wall of Daewoo Institute Construction Technology. The size of the specimen is made by considering minimum size of real structure. In this study, concrete strain gauge, concrete stress gauge, concrete non-stress gauge, and thermocouples, are instrumented to measure thermal stress in massive concrete structure. A new measuring technique is proposed to calculate thermal stress.

  • PDF

Design Technique for Improving the Durability of Top Coating for Thermal Barrier of Gas Turbine (가스터빈의 열차폐용 탑코팅의 내구성 향상 설계기술)

  • Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Thermal barrier coating (TBC) is used to protect the substrate and extend the operating life of the gas turbine for a power plant and an aircraft. The major cause of failure of such a coating is the spallation of coating, and it results from the thermal stress between top coating and bond coating. To improve the durability of TBC system, the dense vertical cracked (DVC) coating method to insert vertical cracks is applied to a gas turbine blade. In this study, a criterion for the design of vertical crack in the DVC coating was presented using the finite element analysis.

Numerical Study of Miro-Contact Surface Induced Hot Spots in Friction Brakes (마찰식 브레이크의 미세 접촉면에 발생된 적열점 현상의 수치적 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.268-273
    • /
    • 2003
  • This paper presents hot spot behaviors on the rubbing surface of disk-pad type brake by using coupled thermal-mechanical analysis technique. The height of micro-asperity on the rubbing surface is usually 2∼3 ${\mu}$m in practical disk brakes. Non-uniform micro-contacts between the disk and the rigid friction pads lead to high local temperature distributions, which may cause the material degradation, and develop hot spots, thermal cracks, and brake system failure at the end for a braking period. The friction temperatures on the rubbing surface of disk brakes in which are strongly related to the hot spot and thermal related wears are rapidly concentrated on the micro-contact asperities during braking. The computed FEM results show that the contact stress, friction induced temperature and thermal strain are highly concentrated on the rubbing micro-contact asperities even though the braking speed and force are small during the braking period. This hot spot may directly produce the slippage and various thermal wears on the brake-rubbing surface.

Formation and Growth of Hydride Blisters in Zr-2.5Nb Pressure Tubes

  • Cheong, Yong-Moo;Gong, Un-Sik;Choo, Ki-Nam;Kim, Sung-Soo;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.192-200
    • /
    • 2001
  • Hydride blisters were formed on the outer surface of Zr-2.5Nb pressure tube by a non- uniform steady thermal diffusion process. A thermal gradient was applied to the pressure tube with a heat bath kept at a temperature of 415$^{\circ}C$ and an aluminum cold finger cooled with flowing water of 15$^{\circ}C$. Optical microscopy and tree-dimensional laser profilometry were used to characterize the hydride blisters with different hydrogen concentrations and thermal diffusion time. Hydride blisters were expected to start at a hydrogen concentration of 30 - 70 ppm and a thermal diffusion time of 4 - 6$\times$10$^{5}$ sec. The hydride blister size increases with higher hydrogen concentrations and longer thermal diffusion time . Some of the samples revealed cracks on the hydride blisters. The ratio of hydride blister depth to height was estimated as approximately 8: 1.

  • PDF

SURGE LINE STRESS DUE TO THERMAL STRATIFICATION

  • Jhung, Myung-Jo;Choi, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.239-250
    • /
    • 2008
  • If there is a water flow with a range of temperature inside a pipe, the wanner water tends to float on top of the cooler water because it is lighter, resulting in the upper portion of the pipe being hotter than the lower portion. Under these conditions, such thermal stratification can play an important role in the aging of nuclear power plant piping because of the stress caused by the temperature difference and the cyclic temperature changes. This stress can limit the lifetime of the piping, even leading to penetrating cracks. Investigated in this study is the effect of thermal stratification on the structural integrity of the pressurizer surge line, which is reported to be one of the pipes most severely affected. Finite element models of the surge line are developed using several element types available in a general purpose structural analysis program and stress analyses are performed to determine the response characteristics for the various types of top-to-bottom temperature differentials due to thermal stratification. Fatigue analyses are also performed and an allowable environmental correction factor is suggested.

Experiments on the Thermal Stratification in the Branch of NPP

  • Kim Sang Nyung;Hwang Seon Hong;Yoon Ki Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1206-1215
    • /
    • 2005
  • The thermal stratification phenomena, frequently occurring in the component of nuclear power plant system such as pressurizer surge line, steam generator inlet nozzle, safety injection system (SIS), and chemical and volume control system (CVCS), can cause through-wall cracks, thermal fatigue, unexpected piping displacement and dislocation, and pipe support damage. The phenomenon is one of the unaccounted load in the design stage. However, the load have been found to be serious as nuclear power plant operation experience accumulates. In particular, the thermal stratification by the turbulent penetration or valve leak in the SIS and SCS pipe line can lead these safety systems to failure by the thermal fatigue. Therefore in this study an 1/10 scaledowned experimental rig had been designed and installed. And a series of experimental works had been executed to measure the temperature distribution (thermal stratification) in these systems by the turbulent penetration, valve leak, and heat transfer through valve. The results provide very valuable informations such as turbulent penetration depth, the possibility of thermal stratification by the heat transfer through valve, etc. Also the results are expected to be useful to understand the thermal stratification in these systems, establish the thermal strati­fication criteria and validate the calculation results by CFD Codes such as Fluent, Phenix, CFX.

Thermal Analysis of a Film Cooling System with Normal Injection Holes Using Experimental Data

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee;Kim, Moon-Young
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • The present study investigated temperature and thermal stress distributions in a film cooling system with normal injection cooling flow. 3D-numerical simulations using the FEM commercial code ANSYS were conducted to calculate distributions of temperature and thermal stresses. In the simulations, the surface boundary conditions used the surface heat transfer coefficients and adiabatic wall temperature which were converted from the Sherwood numbers and impermeable wall effectiveness obtained from previous mass transfer experiments. As a result, the temperature gradients, in contrast to the adiabatic wall temperature, were generated by conduction between the hot and cold regions in the film cooling system. The gradient magnitudes were about 10~20K in the y-axis (spanwise) direction and about 50~60K in the x-axis (streamwise) direction. The high thermal stresses resulting from this temperature distribution appeared in the side regions of holes. These locations were similar to those of thermal cracks in actual gas turbines. Thus, this thermal analysis can apply to a thermal design of film cooling holes to prevent or reduce thermal stresses.

Themal Fatigue Behavior of Alumina Ceramics (알루미나 세라믹스의 열피로 거동)

  • 정우찬;한봉석;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1094-1100
    • /
    • 1998
  • The thermal fatigue behavior of alumina ceramics was investigated by water quenching method. Single-quench thermal shock tests were performed to decide the critical thermal shock temperature difference ($\Delta$Tc) which was found to be 225$^{\circ}C$ Cyclic thermal shock fatigue tests were performed at temperature diff-erences of 175$^{\circ}C$, 187$^{\circ}C$ and 200$^{\circ}C$ respectively. After cyclic thermal shock fatigue test the distributions of retained strength and crack were observed. Retained strength was measured by four point bending method and crack observation method bydye penetration. In terms of the retained strength distribution the critical number of thermal shock cycles(Nc) were 7 for $\Delta$T=200$^{\circ}C$, 35 for $\Delta$T=187$^{\circ}C$ and 180for $\Delta$T=175$^{\circ}C$ respec-tively. In terms of the crack observation the critical number of thermal shock cycles were 5 for $\Delta$T==200$^{\circ}C$ 20 for $\Delta$T==187$^{\circ}C$ and 150 for $\Delta$T=175$^{\circ}C$ respectively. The difference of Nc investigated by two different methods is due to the formation of the longitudinal cracks which had no effect on the four point bending strength. Therefore the thermal fatigue behavior of alumina ceramics could be more accurately described by the crack observation method than the retained strength measurement method.

  • PDF