• Title/Summary/Keyword: Thermal crack

Search Result 738, Processing Time 0.026 seconds

Thermal Crack Characteristics of Concrete Walls with Pipe Cooling (파이프 쿨링 공법 적용에 따른 벽체구조물의 온도균열 특성)

  • 박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper reports the performance results of hydration heat control of mass concrete walls with pipe cooling system. The thickness of walls ranged from 0.9 to 2.2m. In order to investigate the effect of pipe cooling on the thermal and thermal crack characteristics, the pipe cooling was conducted for 42 walls, and the investigation of thermal cracks was conducted for 14 walls. Based on the investigation, the pipe cooling method decreased the peak temperature of about 13-2$0^{\circ}C$ and the thermal crack width of about 30% for mass concrete walls.

  • PDF

Thermal Stress Intensity Factors for Traction Free Cusp Cracks (트랙션이 없는 커스프 균열의 열응력세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.286-294
    • /
    • 1988
  • The thermal stress intensity factors (TSIF's) for the cusp cracks such as hypocycloid crack, symmetric airfoil crack and symmetric lip crack are determined by using Bogdanoff's complex variable approaches in plane thermoplasticity. The results are expressed in terms of the periodic functions of the direction of uniform heat flow. The TSIF's are shown to be sensitive to both the direction of uniform heat flow and be thermal boundary conditions. It is also shown that Fourence's solutions for an insulated circular hole and Sih's solutions for an insulated Griffith crack are derived from the results of the stress and displacement fields for the hypocycloid crack and the TSIF's for the various cusp cracks, respectively.

A Study on the Mix Design and the Control System of Thermal Crack for High Quality Mass Concrete (고품질 매스콘크리트 시공을 위한 배합설계 및 온도균열제어 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.174-178
    • /
    • 2001
  • This study was performed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a result, the optimal mixing conditions were : W/B 41%, unit binder 375kgf/$\textrm{m}^3$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$\textrm{cm}^2$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

A Study on the Mix Design and the Control of Thermal Crack of Mass Concrete (매스콘크리트의 배합설계 및 온도균열제어에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.533-538
    • /
    • 2001
  • This study was peformed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a results, the optimal mixing conditions were : W/B 41%, unit binder 375kg/$cm^{2}$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$cm^{2}$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

Studies on the effect of thermal shock on crack resistance of 20MnMoNi55 steel using compact tension specimens

  • Thamaraiselvi, K.;Vishnuvardhan, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3112-3121
    • /
    • 2021
  • One of the major factors affecting the life span of a Reactor Pressure Vessel (RPV) is the Pressurised Thermal Shock (PTS). PTS is a thermo-mechanical load on the RPV wall due to steep temperature gradients and structural load created by internal pressure of the fluid within the RPV. Safe operating life of a nuclear power plant is ensured by carrying out fracture analysis of the RPV against thermal shock. Carrying out fracture tests on RPV/large scale components is not always feasible. Hence, studies on laboratory level specimens are necessary to validate and supplement the prototype results. This paper aims to study the fracture behaviour of standard Compact Tension [C(T)] specimens, made of RPV steel 20MnMoNi55, subjected to thermal shock through experimental and numerical investigations. Fracture tests have been carried out on the C(T) specimens subjected to thermal transient load and tensile load to quantify the effect of thermal shock. Crack resistance curves are obtained from the fracture tests as per ASTM E1820 and compared with those obtained numerically using XFEM and a good agreement was found. A quantitative study on the crack tip plastic zone, computed using cohesive segment approach, from the numerical analyses justified the experimental crack initiation toughness.

Multi-Crack Problems for Non-homogeneous Material Subjected to Unsteady Thermal Load (비정상 열 하중을 받는 이질재료의 다중 크랙 문제)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • The purpose of this paper is to investigate the time behavior of a multiple crack problems. It is assumed that the medium contains cracks perpendicular to the crack surfaces, that the thermo-mechanical properties are continuous functions of the thickness coordinate. we use the laminated composite plate model to simulate the material non-homogeneity. By utilizing the Laplace transform and Fourier transform techniques, the multiple crack problems in the non-homogeneous medium is formulated. Singular integral equations are derived and solved to investigate the multiple crack problems. As a numerical illustration, transient thermal stress intensity factors(TSIFs) for a functionally graded material plate subjected to sudden heating on its boundary are provided. The variation in the TSIFs due to the change in material gradient and the crack position is studied.

Study on the Behavior of a Center Crack under Thermal Impact by the Dislocation Theory (전위이론에 의한 열충격하의 균열거동에 관한 연구)

  • Cho, Chong-Du;Ahn, Soo-Ick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3408-3414
    • /
    • 1996
  • This paper investigated plane strain stress intensity factors caused by thermal impact on a center-crack strip. The crack was aligned perpendicularly to the strip boundary. The problem was analysed by determining the dislocation density function in the singular integral equations formulated by the dislocation theory. Under the abrupt temperature change along the edge, the center crack behaved as a mode I crack due to the symmetric geometry. The value of maximum stress intensity factor monotonically increased until the ratio of dimensionless crack length approached to about 0.3, followed by gradual decrease. As a result, a critical corresponding crack length was determined.

Thermal Crack Control of LNG Tank Roof (LNG 탱크 Roof의 온도균열 제어)

  • 김태홍;하재담;유재상;이종열;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.421-424
    • /
    • 2002
  • Concrete roof in In-Chon LNG tank #15~18 is a very important structure. Precise control of quality is needed. This roof has 0.6~1.5m thickness, 36.23m radius, and, 12.7m height. So in this structure thermal crack caused by hydration heat should be controled. In this project belite cement plus LSP concrete is used. As a result of ambient temperature rising test and thermal analysis using FEM, this belite cement plus LSP concrete is expected to control the thermal crack well.

  • PDF

Themal Fatigue Behavior of Alumina Ceramics (알루미나 세라믹스의 열피로 거동)

  • 정우찬;한봉석;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1094-1100
    • /
    • 1998
  • The thermal fatigue behavior of alumina ceramics was investigated by water quenching method. Single-quench thermal shock tests were performed to decide the critical thermal shock temperature difference ($\Delta$Tc) which was found to be 225$^{\circ}C$ Cyclic thermal shock fatigue tests were performed at temperature diff-erences of 175$^{\circ}C$, 187$^{\circ}C$ and 200$^{\circ}C$ respectively. After cyclic thermal shock fatigue test the distributions of retained strength and crack were observed. Retained strength was measured by four point bending method and crack observation method bydye penetration. In terms of the retained strength distribution the critical number of thermal shock cycles(Nc) were 7 for $\Delta$T=200$^{\circ}C$, 35 for $\Delta$T=187$^{\circ}C$ and 180for $\Delta$T=175$^{\circ}C$ respec-tively. In terms of the crack observation the critical number of thermal shock cycles were 5 for $\Delta$T==200$^{\circ}C$ 20 for $\Delta$T==187$^{\circ}C$ and 150 for $\Delta$T=175$^{\circ}C$ respectively. The difference of Nc investigated by two different methods is due to the formation of the longitudinal cracks which had no effect on the four point bending strength. Therefore the thermal fatigue behavior of alumina ceramics could be more accurately described by the crack observation method than the retained strength measurement method.

  • PDF

Assessment of Fatigue and Fracture on a Tee-Junction of LMFBR Piping Under Thermal Striping Phenomenon

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.267-275
    • /
    • 1999
  • This paper deals with the industrial problem of thermal striping damage on the French prototype fast breeder reactor, Phenix and it was studied in coordination with the research program of IAEA. The thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the tee-junction of the secondary piping using Green's function method and standard FEM is presented. The thermohydraulic(T/H) loading condition used in the present analysis is the random type thermal loads computed by T/H analysis on the turbulent mixing of the two flows with different temperatures. The thermomechanical fatigue damage was evaluated according to ASME code section 111 subsection NH. The results of the fatigue analysis showed that fatigue failure would occur at the welded joint within 90,000 hours of operation. The assessment for the fracture behavior of the welded joint showed that the crack would be initiated at an early stage in the operation. It took 42,698.9 hours for the crack to propagate up to 5 mm along the thickness direction. After then, however, the instability analysis, using tearing modulus, showed that the crack would be arrested, which was in agreement with the actual observation of the crack. An efficient analysis procedure using Green's function approach for the crack propagation problem under random type load was proposed in this study. The analysis results showed good agreement with those of the practical observations.

  • PDF