• Title/Summary/Keyword: Thermal conductivity

Search Result 2,671, Processing Time 0.031 seconds

A research on the Tunnel bracket insulator pollution characteristic in Korea Railroad (터널브라킷 애자류 오염도 분석에 관한 연구)

  • Jeon, Yong-Joo;Ryu, Young-Tae;Park, Young-Sik;Park, Ki-Bum;Lee, Tae-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1963-1969
    • /
    • 2009
  • This paper introduces method to estimate pollutant negative influence to polymer type insulator according to the international standard. To accomplish this goal, effective sample collecting method was surface was collected directly with the same dimension. Distilled Through this method pollute is easily and accurately collected. The second step is pollutant analysis. Several analyze item is selected such as quantity, conductivity, contact angle, Optical Microscope(OM), IR spectrometer(FT-IR), Equivalent Salt Deposit Density(ESDD), Thermal Analyzer(TA) and ICP-AES. The third step, best represent tunnel was selected considering location, length and natural surroundings. Also to consider the difference at inside the tunnel, several bracket insulators were selected along to the location. To make the result precise, above procedure was repeated several times at the same target. Finally relation among type of train, numbers of movement, surroundings, length will be considered in combination with the pollution. With this result pollute map for KORAIL could be accomplished and inspect period will be optimized case by case.

  • PDF

Study for groove angle of Al 5083 in Butt Welding (Al 5083 Butt 용접시 개선각에 관한연구)

  • 이해우;김세환
    • Proceedings of the KWS Conference
    • /
    • 1994.05a
    • /
    • pp.222-225
    • /
    • 1994
  • The weldability of aluminum is excel lent but weld metal is subject to include weld defects such as porosities, crack, incomplete penetration and incomplete fusion because of improper welding parameters. Especially, the porosities are main weld defects because the difference of hydrogen solubility change in melt ins and solidification state with temperature changing. Deformation of aluminum is larger than mi Id steel due to higher thermal conductivity. It is reported that porosities in deposited metal affect tensile strength and elongation. Therefore, the effect of groove angle on porosities and mechanical properties of weld metal were researched in this report where Al-5083 plate was used with 5356 filler metal that are excellent anti corrosion and strength.

  • PDF

Son transport characteristics through random or block polymer electrolyte membranes (랜덤 및 블록 공중합에 따른 고분자 전해질막의 이온전도특성)

  • Park, Chi-Hoon;Lee, Chang-Hyun;Nam, Sang-Yong;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.57-60
    • /
    • 2004
  • Polymer electrolyte membranes have been studied widely in chloro-alkali electrolysis, cationic exchange resins, and fuel cell applications. Especially, sulfonated polyimide membranes have been suggested as a potential polymer electrolyte in PEMFC due to their excellent thermal stability and high proton conductivity.(omitted)

  • PDF

Sulfonated Poly(styrene-divinyl benzene)/PTFE Composite Membranes for Fuel Cell (술폰화 폴리스틸렌-디비닐벤젠/테플론 복합막의 연료전지 특성 연구)

  • Shin, Jeong-Pil;Kim, Jeong-Hoon;Park, In-Jun;Lee, Soo-Bok;Seo, Dong-Hak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.65-68
    • /
    • 2004
  • Proton-exchange membranes have attracted much attention in the past few decades due to their important application in fuel cell systems. The mainly used proton-exchange membranes are perfluoropolymers such as DuPont's Nafion$^{(R)}$ and Asahi Chemical's Aciplex$^{(R)}$ because of their high performance including high proton conductivity & mechanical strength, and excellent thermal & chemical stability.(omitted)ted)

  • PDF

Insulation Performance Evaluation of the Curtain Wall Anchoring Unit by 3D Heat Transfer Simulation and Life Cycle Cost Analysis (3차원 전열해석 및 생애비용 분석을 통한 커튼월 앵커링 유닛의 단열성능 향상 방안 평가)

  • Kang, Seung-Hee;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.63-70
    • /
    • 2003
  • It is very important to improve the insulation performance of curtain wall anchoring unit since it is composed of materials with high thermal conductivity, such as aluminium, steel and so on. This study aims to evaluate the heating energy performance and economical efficiency of various alternatives which are different in position and material of insulation. As results, alternative of inserting the urethane washer & pad and coating the anchoring unit with urethane foam can improve the heating energy performance and L.C.C(Life Cycle Cost) by 6.33% and 0.95%, respectively, as compared with the existing case.

Evaluation on the Performance of Design Parameters in Earth Tube System (지중튜브시스템 주요 설계 변수의 성능 평가)

  • Hwang, Yong-Ho;Hwang, Seok-Ho;Choi, Jeong-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.87-94
    • /
    • 2016
  • Earth tube system can be installed in many ways. However, performance data on earth tube system is still insufficient. Therefore, in this study seven design parameters of earth tube systems were chosen such as underground earth tube length, depth, tube thermal conductivity, thickness, radius, soil conditions, and fan type. And the change effects in the values of the seven parameters on earth tube exit temperatures and heat transfer rate were examined through Energyplus simulations.

Three-Dimensional Analysis of Self-Heating Effects in SOI Device (SOI 소자 셀프-히팅 효과의 3차원적 해석)

  • 이준하;이흥주
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.29-32
    • /
    • 2004
  • Fully depleted Silicon-on-Insulator (FD-SOI) devices lead to better electrical characteristics than bulk CMOS devices. However, the presence of a thin top silicon layer and a buried SiO2 layer causes self-heating due to the low thermal conductivity of the buried oxide. The electrical characteristics of FDSOI devices strongly depend on the path of heat dissipation. In this paper, we present a new three-dimensional (3-D) analysis technique for the self-heating effect of the finger-type and bar-type transistors. The 3-D analysis results show that the drain current of the finger-type transistor is 14.7% smaller than that of the bar-type transistor due to the 3-D self-heating effect. We have learned that the rate of current degradation increases significantly when the width of a transistor is smaller that a critical value in a finger-type layout. The current degradation fro the 3-D structures of the finger-type and bar-type transistors is investigated and the design issues are also discussed.

  • PDF

Evaluation of Effective Thermal Conductivity of Closed-loop Vertical Ground Heat Exchanger (수직 밀폐형 지중 열교환기의 현장시공 및 유효열전도도 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Kwak, Tae-Hoon;Choi, Hang-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • 본 연구에서는 수직 밀폐형 지중 열교환기를 현장 시험시공하고 현장 열응답 시험을 수행하여 보어홀과 지반의 유효열전도도를 측정하였다. 뒤채움용 그라우트재는 벤토나이트와 시멘트가 고려되었으며 첨가제로는 천연규사와 흑연을 사용하고, 지중 열교환기 파이프 단면은 일반적으로 시공되는 U-loop 파이프 단면과 파이프 사이의 열간섭 효과를 최소화 한 3공형 파이프 단면이 착용되었다. 시멘트-천연규사 그라우트재가 벤토나이트-천연규사 그라우트재 보다 큰 유효열전도도를 보이고 흑연을 첨가한 그라우트는 시멘트와 벤토나이트 모두에서 천연규사만 첨가하였을 때 보다 유효열전도도가 높게 나타났다. 3공형 파이프 단면의 경우 단면에 따른 영향을 비교하기 위해 그라우트는 시멘트-천연규사와 벤토나이트-천연규사를 사용하였으며 유효 열전도도 측정결과 각각 3.65 W/mK, 3.40 W/mK으로 일반 U-loop 파이프 단면을 사용하였을 때 보다 높게 나타났다.

  • PDF

An Experimental Study on the Physical Properties Model of High Strength Concrete at High Temperature (고온시 고강도 콘크리트의 물리적 특성 모델 설정에 관한 실험적 연구)

  • Kim Heung-Yaul;Seo Chee-Ho;Choi Seng-Kwan;Jeon Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.1-4
    • /
    • 2005
  • This research is to present experimental materials model of high strength concrete for prediction of fire safety of structural members based on physical properties of materials during heating up to 800$^{circ}C$. The following conclusions are drawn from this study. First of all, between 100 to 200 $^{circ}C$, the physical models of concrete such as specific heat and thermal conductivity, show visible degradation, regardless of concrete strength. Second, between 300 to 600$^{circ}C$, the physical models of the 29MPa and 49MPa concrete show degradation continually at these temperatures. Finally, beyond 600$^{circ}C$, the physical models of 49MPa strength concrete show larger degradation than 29MPa strength concrete due to rise of pore pressure and melting of the interface between aggregate and cement paste.

  • PDF

Bonding and Etchback Silicon-on-Diamond Technology

  • Jin, Zengsun;Gu, Changzhi;Meng, Qiang;Lu, Xiangyi;Zou, Guangtian;Lu, Jianxial;Yao, Da;Su, Xiudi;Xu, Zhongde
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.18-20
    • /
    • 1997
  • The fabrication process of silicon-diamond(SOD) structure wafer were studied. Microwave plasma chemical vapor deposition (MWPCVD) and annealing technology were used to synthesize diamond film with high resistivity and thermal conductivity. Bonding and etchback silicon-on-diamond (BESOD) were utilized to form supporting substrate and single silicon thin layer of SOD wafer. At last, a SOD structure wafer with 0.3~1$\mu\textrm{m}$ silicon film and 2$\mu\textrm{m}$ diamond film was prepared. The characteristics of radiation for a CMOS integrated circuit (IC) fabricated by SOD wafer were studied.

  • PDF