• Title/Summary/Keyword: Thermal conditions

Search Result 4,621, Processing Time 0.034 seconds

A Study on the Effects of the Thickness of Top Coat on the Thermal Stresses of a Sprayed Thermal Barrier Coating (용사 열차폐 코팅층의 두께가 열응력에 미치는 영향)

  • 김형남;양승한
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.223-225
    • /
    • 2004
  • Based on the principle of complementary energy an analytical method is developed for determining thermal stress distribution in an thermal barrier coating. This method gives the stress distributions which satisfy the stress-free boundary conditions at the edge. Numerical examples are given in order to verify the method and to investigate the thickness effects of the ZrO$_2$-8wt%Y$_2$O$_3$ top coat on the integrity of thermal barrier coating consisted of IN738LC substrate and MCrAlY bond coat.

  • PDF

Manufacture and experiments of thermal process for comparative study of adaptive control (적응제어방식 성능비교를 위한 실험실용 프로세스의 제작 및 실험)

  • 주성준;공재섭;박용식;김영철;양홍석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.333-338
    • /
    • 1990
  • Most verification of improvements for adaptive control schemes are. dependent on computer simulations, but these computer simulations have much limitation, because (if complex actual conditions of system. This paper is concerned with the constructions of a thermal process system for experiments with various control schemes. This thermal process system is composed of a water tank, PC-XT, AD/DA converters power supply and thermal sensors. We estimate. the algorithms of pole-assignment adaptive control in the manifold disturbances and environments, changing system dynamics. The system equations for thermal press are included.

  • PDF

Thermal modeling and analysis of single phase LSPM (단상 LSPM의 열해석 모델링 및 특성 해석)

  • Ham, Sang-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.411-416
    • /
    • 2015
  • This paper presents the thermal modeling and analysis of Line power Start Permanent magnet Motor (LSPM). Thermal analysis of electrical machines is important because temperatures that are consistently too high will reduce the life time of machines and may lead to serious failure. Coefficients of convection are calculated according to the types of operating conditions. And computational fluid dynamics (CFD) technique is performed in order to predict thermal characteristic. The results are compared to the test results.

Thermal stresses in a non-homogeneous orthotropic infinite cylinder

  • Edfawy, E.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.841-852
    • /
    • 2016
  • The present paper is concerned with the investigation of propagation of thermoelastic media, the finite difference technique is used to obtain the solution for the uncoupled dynamic thermoelastic stress problem in a non-homogeneous orthrotropc thick cylindrical shell. In implementing the method, the linear dynamic thermoelasticity equations are used with the appropriate boundary and initial conditions. Thermal shock stress becomes of significant magnitude due to stress wave propagation which is initiated at the boundaries by sudden thermal loading. Numerical results have been given and illustrated graphically in each case considered. The presented results indicate that the effect of inhomogeneity is very pronounced.

Thermal Design of IGBT Module with Respect to Stability (IGBT소자의 열적 안정성을 고려한 방열설계)

  • Lee Joon-Yeob;Song Seok-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • Thermal design is required with considering thermal stability to verify the reliability of electric power device with using IGBT. Numerical analysis is performed to analyzed the change in thermal resistance with respect to the various thermal density of heating element. Correlations between thermal resistance and heat generation density are established. With using these correlations, performance curve is composed with respect to the change in thermal resistance of cooling conditions for natural convection and forced convection. Thermal fatigue is occurred at the Inside and outside of IGBT by repeated heat load. The crack is occurred between base plate and ceramic substrate for the inside. When the crack length is 4mm, the failure is occurred. Therefore, Thermal design method considering thermal density, thermal fatigue resistance is presented on this study and it is expected to thermal design with considering life prediction.

  • PDF

Development of Cold Chain System Using Thermal Storage with Low-Energy Type (저 에너지형 축냉식 저온유통 시스템 개발)

  • Kwon K.H.;Jeong J.W.;Kim J.H.;Choi C.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.161-167
    • /
    • 2006
  • The purpose of this study is to find the optimal conditions of PCM slurry manufacturing equipment for saving the marketing cost and keeping the original quality of products. In addition, the characteristics of the movable container for shipping or distributing products is analysed. The major results are as follows. 1. PCM thermal storage system is designed with the conditions of temperature($-5{\sim}10^{\circ}C$), cold chain time(30 minutes), and one time usage(50 liter). This system includes tank, freezer, circulating pump, cycle type heat exchanger, swelling tank, equipment of supplying PCM supplying unit includes cold tank, cycle type heat exchanger, suction unit and control equipments, etc. 2. After ability test of PCM thermal storage system, it shows that the required freezing time of PCM thermal storage system is less than one of the previous system. The reason is that churn (top and bottom) and compulsion circulation are occurred simultaneously and unit cooler type method is better than chiller type method. 3. By the experiment of transportation latent heat container, it is decided that the best container is $K_1$ with latent heat temperature($0{\sim}5^{\circ}C$) and density(0.15%). However, for $K_l\;and\;K_2$, it is necessary more studies on latent heat thermal conditions and conditions of making method.

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.

Numerical Simulation and PIV Measurement on the Internal Flow in a Centrifugal Mini Pump at Low Flow Rate Conditions

  • Yuan, Hui-Jing;Shao, Jie;Cao, Guang-Jun;Liu, Shu-Hong;Wu, Yu-Lin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.775-780
    • /
    • 2008
  • This paper reports on the internal flow of a centrifugal mini pump working at the low flow rate operating conditions. The RNG $\kappa-\varepsilon$ turbulence model was employed to simulate the three-dimensional turbulent flow in the pump. To examine and certify the simulation results, a transparent acrylic centrifugal mini pump model which is suitable for PIV measurement has been developed. The tongue region and the passages region between blades were investigated using PIV. In order to eliminate the effect of refraction on the area closed to the wall and increase the measurement accuracy, the fluorescent particles were scatted into the working fluid with the tracing particles. It is found from the calculation and PIV measurement results that there is a large area of recirculation flow near the tongue at low flow rate operating conditions. The computationally predicted water head using the $\kappa-\varepsilon$ turbulence model at low flow rate operating conditions are in very good agreement with the experimentally measured water head and the mean velocity distributions at investigation area obtained by PIV and calculation showed a satisfactory agreement as well. Meanwhile, the results of PIV measurements show that the flow status in one passage is different to another. And for capturing the internal flow detail information, the $\kappa-\varepsilon$ turbulence model is not very suitable.

  • PDF

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.

Thermal Fatigue Reliability of Solder Joints in a Thin Film Optical Filter Device (박막 광학 필터 디바이스의 패키징시 솔더 조인트의 피로 신뢰성 해석)

  • Lee, Sung-Chul;Hyun, Chung-Min;Lee, Hyung-Man;Kim, Myoung-Jin;Kim, Hwe-Kyung;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.677-684
    • /
    • 2004
  • Plastic and creep deformations of solder joints during thermal cycling are the main factors of misalignments and power losses in optical telecommunication components. Furthermore, the increased mismatch between solder Joint-bonded areas may cause severe failure in the components. Darveaux's creep model was implemented into a finite element program (ABAQUS) to simulate creep response of solder. Based on the finite element results, thermal fatigue reliability was predicted by using various fatigue life prediction models. Also, the effects of ramp conditions, dwelling time, and solder joint-embedding materials on the reliability were investigated under the thermal cycling conditions of the Telcordia schedule (-40∼75$^{\circ}C$).