• 제목/요약/키워드: Thermal compensation

Search Result 212, Processing Time 0.046 seconds

Design and control of the precision heat actuator using thermoelectric device (열전소자를 이용한 정밀 열구동기구의 설계 및 제어)

  • 서장렬;김선민;이선규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.395-398
    • /
    • 1997
  • In the modem manufacturing system, to achieve the unmanned automation, the stability of accuracy is required through a long working period. The thermal deformation of precision machine is predominant in this long time stability. While grinding slender and long workpiece at cylindrical grinding machine, we support workpiece using steadies to prevent the vibration of workpiece. The thermal deformation of the machine by grinding and internal heat source cause processing errors, so the steadies for compensating the thermal deformation in real time are strongly needed. In order to compensate these thermal deformation and grinding processing errors, the device to determine the precise positioning having the stroke of 10.mu.m is necessary. This paper suggests design and make the device to determine the precise positioning using thermoelectric device, to investigate the control characteristics and presents the heat actuator will be very useful in machine tool.

  • PDF

Simulation Method for Thermal appropriate Desing of Compound Cylinder using Bondgraph Modeling (원통결합부의 열특성 최적설계를 위한 예측 시뮬레이션 방법)

  • 민승환;박기환;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.635-640
    • /
    • 1996
  • A thermo-elastic system in the production machine has highly nonlinear dynamic characteristics. In general, the finite element method is utilized for accurate analysis. However, it requires large computing time. Thus, thermo-elastic systems are usuallymodeled as electric and fluid system using lumped para,eter. In this paper. we propose the bondgraph model and transient simulation methodology of thermo-elastic system in consideration of various boundary and joint contact conditions. Consequently, the proposed method ensures a possibility of its on-line compensation about undesirable phenomena by using real time estimate process and electronic cooling device for thermal appropriate behavior. Thermo-elastic model consisting of bush and shaft including contact condition is presented.

  • PDF

Thermal Error Measurement and Modeling Techniques for the 5 Degree of Freedom(DOF) Spindle Unit Drifts in CNC Machine Tools (CNC 공작기계 스핀들 유닛의 5자유도 열변형 오차측정 및 모델링 기술)

  • Park, Hui-Jae;Lee, Seok-Won;Gwon, Hyeok-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1343-1351
    • /
    • 2000
  • Thermally induced errors have been significant factors affecting the machine tool accuracy. In this paper, the spindle thermal error has been focused, where the 5 degree of freedom thermal error components are considered. An effective measurement system has been devised for the 5 DOF thermal errors, consisting of gap sensors and thermocouples around the micro-computer interfaced environment. Several thermal error modeling techniques are also implemented for the thermal error prediction: multiple linear regression, neural network and system identification methods, etc. The performance of the thermal error modeling techniques is evaluated and compared, giving the system identification method as the optimum model having the least deviation. The developed system for the thermal error measurement and modeling was practically applied to a CNC machining center, and the spindle thermal errors were effectively compensated around the micro computer-machine tool interfaced networks. The machine tool accuracy was improved about 4-5 times typically.

Optical and Thermal Influence Analysis of High-power LED by MCPCB temperature (MCPCB의 온도에 따른 고출력 LED의 광학적, 열적 영향력 분석)

  • Lee, Seung-Min;Yang, Jong-Kyung;Jo, Ju-Ung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2276-2280
    • /
    • 2008
  • In this paper, we present thermal dependancy of LED package element by changing temperature of MCPCB for design high efficiency LED lamp, and confirmed influence of LED chip against temperature with analysis of thermal resistance and thermal capacitance. As increasing temperature, WPOs were decreased from 25 to 22.5 [%] and optical power were also decreased. that is decreased reason of optical power that forward voltage was declined by decrease of energy bandgap. Therefore optical power by temperature of MCPCB should consider to design lamp for street light and security light. Moreover, compensation from declined optical efficiency is demanded when LED package is composed. Also, thermal resistances from chip to metal PCB were decreased from 12.18 to 10.8[$^{\circ}C/W$] by changing temperature. Among the thermal resistances, the thermal resistance form chip to die attachment was decreased from 2.87 to 2.5[$^{\circ}C/W$] and was decreased 0.72[$^{\circ}C/W$] in Heat Slug by chaning temperature. Therefore, because of thermal resistance gap in chip and heat slug, reliability and endurance of high power LED affect by increasing non-radiative recombination in chip from heat.

A New Automatic Compensation Network for System-on-Chip Transceivers

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.371-380
    • /
    • 2007
  • This paper proposes a new automatic compensation network (ACN) for a system-on-chip (SoC) transceiver. We built a 5 GHz low noise amplifier (LNA) with an on-chip ACN using 0.18 ${\mu}m$ SiGe technology. This network is extremely useful for today's radio frequency (RF) integrated circuit devices in a complete RF transceiver environment. The network comprises an RF design-for-testability (DFT) circuit, capacitor mirror banks, and a digital signal processor. The RF DFT circuit consists of a test amplifier and RF peak detectors. The RF DFT circuit helps the network to provide DC output voltages, which makes the compensation network automatic. The proposed technique utilizes output DC voltage measurements and these measured values are translated into the LNA specifications such as input impedance, gain, and noise figure using the developed mathematical equations. The ACN automatically adjusts the performance of the 5 GHz LNA with the processor in the SoC transceiver when the LNA goes out of the normal range of operation. The ACN compensates abnormal operation due to unusual thermal variation or unusual process variation. The ACN is simple, inexpensive and suitable for a complete RF transceiver environment.

  • PDF

Ultra-precision Grinding Optimization of Mold Core for Aspheric Glass Lenses using DOE and Compensation Machining (실험계획법과 보정가공을 이용한 비구면 유리렌즈 성형용 코어의 초정밀 연삭가공 최적화)

  • Kim, Sang-Suk;Lee, Yong-Chul;Lee, Dong-Gil;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.45-50
    • /
    • 2007
  • The aspheric lens has become the most popular optical component used in various optical devices such as digital cameras, pick-up lenses, printers, copiers etc. Using aspheric lenses not only miniaturizes and reduces the weight of products, but also lower prices and higher field angles can be realized. Additionally, plastic lenses are being changed to glass lenses more recently because of low accuracy, low acid-resistance and low thermal-resistance in the plastic lenses. Currently, one fabrication method of glass lenses is using a glass-mold method with a high precision mold core for mass production. In this paper, DOE (Design Of Experiments) and compensation machining were adopted to improve the surface roughness and the form accuracy of the mold core. The DOE has been done in order to discover the optimal grinding conditions which minimize the surface roughness with factors such as work spindle revolution, turbine spindle revolution, federate and cutting depth. And the compensation machining is used to generate high form accuracy of the mold core. From various experiments and analyses, we could obtain the best surface roughness 5 nm in Ra, form accuracy $0.167\;{\mu}m$ in PV.

Passive Temperature Compensation for All Optical Fiber Type DWDM Interleaver (고밀도 파장분할용 전광섬유형 인터리버의 수동 온도보상)

  • Chang Jin Hyeon;Kim Yung Kwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.35-42
    • /
    • 2004
  • In this paper, we report Mach Zehnder Interleaver of optical fiber type is fabricated by the fabrication system only for interfermeter design, and it is used $CO_2$ laser to adjust precisely the wavelength. The optical fiber is very sensitive in the thermal variation around. Thus, When fabrication the prototype, it is applied a technique to compensate the optical thermal effect because the center wavelength at the output is shifted according to the thermal variation around. it can he done by applying a substrate with high thermal expansion coefficient as well as an adjusting the position between two optical fiber couplers. Consequently, the output wavelength is shifted within 0.05 nm when the surrounding temperature varies until $60^{\circ}C$.

Degree of Restraint(DOR) of Longitudinal Steel at Continuously Reinforced Concrete Pavement(CRCP) Against Environmental Loadings (환경하중에 의한 연속철근콘크리트(CRCP) 종방향 철근의 구속정도)

  • Nam, Jeong-Hee;Ahn, Sang Hyeok
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.95-104
    • /
    • 2014
  • PURPOSES : The purpose of this study is to evaluate the degree of restraint (DOR) of longitudinal steel at continuously reinforced concrete pavement (CRCP) against environmental loadings. METHODS : To measure the longitudinal steel strain, 3-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10 min. intervals during 259 days. In order to properly analyze the steel strains first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into 12 phases with different events such as before paving, during concrete hardening, and after first cracking, etc. RESULTS : Thermal strain rate (TSR) concept is defined as the linear strain variations with temperature changes and restraints rate of longitudinal steel against environmental loadings (especially thermal loading) with different cases is defined as degree of restraint(DOR). New concept of DOR could be indirect indicator of crack width behaviors of CRCP. CONCLUSIONS : Before paving, DOR of longitudinal steel is almost same at the coefficient of thermal expansion of steel ($12.44m/m/^{\circ}C$) because of no restraint boundary condition. After concrete pouring, DOR is gradually changed into -1 due to concrete stiffness developing with hydration. After first cracking at crack induced area, values of DOR are around -3~-5. The negative DOR stands for the crack width behavior instead of steel strain behavior. During winter season, DOR reached to -5.77 as the highest, but spring this values gradually reduced as -1.7 as the lowest. Based on this observation, we can presume crack width decreased over time within the time frame of this study. This finding is not consistent with the current theory on crack width variations over time, so further study is necessary to identify the causes of crack width reducing. One of the reasons could be related to concrete stress re-distribution and stress relaxation.