• Title/Summary/Keyword: Thermal compensation

Search Result 212, Processing Time 0.036 seconds

NC Technology for High-Precision Machining in Machining Centers (머시닝센터에서 고정밀 가공을 위한 NC 기술)

  • 정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.748-754
    • /
    • 1994
  • This paper deals with a geometric error simulator, measurement and inspection of workpiece errors on the machine tools, and identification and compensation methodology of thermal errors in machining centers. In order to raise the machining accuracy of workpieces a measurement and inspection system on the machine tool is developed. By using MPPGT module Manual and CNC type CMMs are realized on the machining centers. To compensate for geometric and thermal deformation errors of machining centers, a real time and an off line geometric adaptive control system were developed on the machining centers. A vertical and a horizontal machining center equipped with FANUC 0MC were used for experiments. Performance of the systems were confirmed with a large amount of experiment.

  • PDF

A Study on the Drift-minimization in the Transistor Differential Amplifier (트란지스터 착동증폭기의 표동 극소화에 관한 연구)

  • 김종상
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.4 no.3
    • /
    • pp.28-33
    • /
    • 1967
  • The analysis of differential amplifier is simplified by the extention of bisection theorem. In order to reduce the thermal and porwor drifts, a self compensating circuit is employed. The optimum conditions of the self compensating circuit are: the base-emitter voltage of one transistor should be equal to the other's base-emitter voltage for basic self compensating circuit, the tempereature coefficients of base-emitter voltage of one transistor equal to the others for thermal compensation. By regarding the thermal and power drifts the experiments were performed were performed and the numerical results were consistent with the measured values.

  • PDF

Study of Equivalent Retention among Different Polymer-Solvent Systems is Thermal Field-Flow Fractionation

  • 김원숙;박영훈;문명희;유유경;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.868-874
    • /
    • 1998
  • An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ratio of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted AT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value.

Hardness Distribution and Dimensional Change after Partial- Hardened Hot Stamping of Automotive Body Part (국부 연화 핫스탬핑 차체 부품의 경도 분포 및 열 변형 거동)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.66-73
    • /
    • 2022
  • Partial-hardened hot stamping has been well known to be very effective to absorb more energy in automotive lateral crash. Hardness distribution and dimensional change after partial-hardened hot stamping have been studied to find out effect of thermal deformation of the heated hot stamping die on dimensional accuracy of automotive center pillar. Soft zone of commercial center pillar showed 275~345 in Vickers hardness, indicating bigger non-uniformity which resulted from thermal deformation of heated die. Dimensional changes in soft zone of the commercial center pillar measured by three dimensional scanner were much bigger than that in hard zone. It has been found that hot stamping die compensation considering thermal deformation in soft zone causes a significant decrease in hardness deviation in the soft zone, corresponding to 20 percent of commercial center pillar and subsequently leads to much higher dimensional accuracy.

Method for Measuring Weld Temperature Using an Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 용접부의 온도 측정 방법)

  • Ro, Chan-Seung;Kim, Kyeong-Suk;Chang, Ho-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2014
  • In this paper, a method is tested to measure temperatures in high-temperature welds. Protective glass was installed between an infrared thermal imaging camera and a heat source, and temperature compensation was applied to the measuring instruments. When the temperature of halogen lamps was taken in real-time and measured by the thermal camera, the temperature was found to be almost invariant with the distance between the camera and heat source. The temperature range could be predicted, through correlations with the thickness of the protective glass and the measured distance. This study suggests that the temperature measurement of welds obtained by using an infrared thermal imaging camera is valid, through experimental testing of heat sources.

Evaluation of Thermal Expansion Coefficient and Autogenous Shrinkage Properties of High Strength Mass Concrete Using Retarder AgentBusiness (응결지연제를 사용한 고강도 매스 콘크리트의 열팽창계수 및 자기수축 특성 평가)

  • Shin, Kyoung-Su;Koo, Kyung-Mo;Lee, Eui-Bae;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.73-76
    • /
    • 2009
  • Autogenous shrinkage of high-strength mass concrete is affected high temperature history. So to evaluate autogenous shrinkage of high-strength mass concrete accurately, thermal expansion in it should be removed. In this study, compensated autogenous shrinkage was calculated after gathering thermal expansion coefficient at early age experimentally. As a result of the study. Autogenous shrinkage of mass specimen (300 ${\times}$ 300 ${\times}$ 300mm) was remarkably higher than it of standard specimen (100 ${\times}$ 100 ${\times}$ 400mm). So it was found that compensation on thermal expansion should in evaluating autogenous shrinkage of high-strength mass concrete. And this study shows results on opc and similar own contraction, if used retarder.

  • PDF

The Influence of Rapid Thermal Annealing Processed Metal-Semiconductor Contact on Plasmonic Waveguide Under Electrical Pumping

  • Lu, Yang;Zhang, Hui;Mei, Ting
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • The influence of Au/Ni-based contact formed on a lightly-doped (7.3×1017cm−3, Zn-doped) InGaAsP layer for electrical compensation of surface plasmon polariton (SPP) propagation under various rapid thermal annealing (RTA) conditions has been studied. The active control of SPP propagation is realized by electrically pumping the InGaAsP multiple quantum wells (MQWs) beneath the metal planar waveguide. The metal planar film acts as the electric contact layer and SPP waveguide, simultaneously. The RTA process can lower the metal-semiconductor electric contact resistance. Nevertheless, it inevitably increases the contact interface morphological roughness, which is detrimental to SPP propagation. Based on this dilemma, in this work we focus on studying the influence of RTA conditions on electrical control of SPPs. The experimental results indicate that there is obvious degradation of electrical pumping compensation for SPP propagation loss in the devices annealed at 400℃ compared to those with no annealing treatment. With increasing annealing duration time, more significant degradation of the active performance is observed even under sufficient current injection. When the annealing temperature is set at 400℃ and the duration time approaches 60s, the SPP propagation is nearly no longer supported as the waveguide surface morphology is severely changed. It seems that eutectic mixture stemming from the RTA process significantly increases the metal film roughness and interferes with the SPP signal propagation.

Design and Research on High-Reliability HPEBB Used in Cascaded DSTATCOM

  • Yang, Kun;Wang, Yue;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.830-840
    • /
    • 2015
  • The H-bridge inverter is the fundamental power cell of the cascaded distribution static synchronous compensator (DSTATCOM). Thus, cell reliability is important to the compensation performance and stability of the overall system. The concept of the power electronics building block (PEBB) is an ideal solution for the power cell design. In this paper, an H-bridge inverter-based “plug and play” HPEBB is introduced into the main circuit and the controller to improve the compensation performance and reliability of the device. The section that discusses the main circuit primarily emphasizes the design of electrical parameters, physical structure, and thermal dissipation. The section that presents the controller part focuses on the principle of complex programmable logic device -based universal controller This section also analyzes typical reliability and anti-interference issues. The function and reliability of HPEBB are verified by experiments that are conducted on an HPEBB test-bed and on a 10 kV/± 10 Mvar DSTATCOM industrial prototype.

Compensation of Sun Tracking Error caused by the Heliostat Geometrical Error through the Canting of Heliostat Mirror Facets (반사거울 설치 방향 조정에 의한 Heliostat 기구오차에서 기인하는 태양추적오차의 보정)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.22-31
    • /
    • 2009
  • Canting is the optical alignment of mirror facets of heliostat such that the heliostat could focus the energy as a unit concentrator. Canting could improve the optical performance of heliostat and thus improves the efficiency of heliostat and ultimately improves the efficiency of the solar thermal power plant. This study discusses the effect of mirror canting, especially off-axis canting, used to compensate the sun tracking error caused by the heliostat geometrical errors. We first show that the canting could compensate the sun tracking error caused by the heliostat geometrical errors. Then we show that the proper canting time could exist, depending on the heliostat location. Finally we show how much the sun tracking performance could be improved by canting, by providing RMS sun tracking error. The limitation and caution of using canting to improve the sun tracking performance are also discussed.

A Practical Power System Stabilizer Tuning Method and its Verification in Field Test

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Baek, Seung-Mook;Choy, Young-Do;Kim, Tae-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.400-406
    • /
    • 2010
  • This paper deals with parameter tuning of the Power System Stabilizer (PSS) for 612 MVA thermal power plants in the KEPCO system and its validation in a field test. In this paper, the selection of parameters, such as lead-lag time constants for phase compensation and system gain, is optimized using linear and eigenvalue analyses. This is then verified through the time-domain transient stability analysis. In the next step, the performance of PSS is finally verified by the generator's on-line field test. After the field test, measured and simulated data are also compared to prove the effectiveness of the models used in the simulations.