• Title/Summary/Keyword: Thermal calculation

Search Result 796, Processing Time 0.034 seconds

Comparison on Thermal Analysis Methods for Multi-Layer Insulation (다층박막단열재 열해석 방법 비교 연구)

  • Hyun, Bum-Seok;Kim, Hui-Kyung;Choi, Joon-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.290-295
    • /
    • 2003
  • Among the thermal analysis methods for Multi-Layer Insulation(MLI), effective emittance, diffusion MLI node and arithmetic MLI node methods are compared. The methods have been applied to the aluminum panel under the low earth orbit environment. TRASYS program is used for geometrical math modeling and SINDA program for thermal math modeling and temperature calculation. Test cases are selected according to MLI area on the panel. Temperature results are calculated and compared under the ratio of absorptivity and emissivity.

  • PDF

Implementation of Performance Monitoring System for Thermal Power Plant in SIEMENS DCS (SIEMENS DCS 환경에서 화력발전소 성능감시 시스템 구현)

  • 김승민;문태선;조창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.37-37
    • /
    • 2000
  • This paper introduces the Performance Monitoring System(PMS) in a thermal power plant. The purpose of the PMS is to offer the operator current performance information of plant which could be an index of plant status or information to improve plant efficiency. The PMS of Bukcheju thermal power plant unit #2&3 is implemented under the SIEMENS DCS which supplies about 150 function blocks for performance calculation and all measured signals. The performance of unit, boiler, turbines, feedwater heaters, condenser, airpreheaters, feedwater pumps will be monitored and updated for every 5 minutes in PMS of Bukcheju TPP.

  • PDF

Heat transfer analysis of steel plate by moving coil in induction heating process (이동하는 유도가열 코일에 의한 강판의 열 유동 해석)

  • Yun, Jin-O;Yang, Yeong-Su;Gang, Dae-Hyeon
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.126-128
    • /
    • 2005
  • This paper presents a 3-D finite element analysis of a magneto-thermal coupled problem with moving conductor. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. Transient finite element method for analysis of moving conductor needs many number of elements and much time to make calculation. Therefore, in this paper, finite element formulation derived from quasi-state is adopted. Finite element results were compared with the experimental results. The results demonstrate that this approach is suitable to solve the magneto-thermal coupled problem.

  • PDF

Thermal Stress Analysis in the Vicinity of Butt Welded Joiny of a Strip (순간가열(瞬間加熱)된 Strip의 과도적열응력해석(過渡的熱應力解析))

  • J.E.,Park;H.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 1973
  • In this paper, it is desired to show a simplified analytical method in estimating the thermal stresses in the heat affected zone of butt welded joint. A finite strip as shown in Fig.1 is taken as a analytical model for stress analysis. Expressing the temperature distributions by Fourier series, the thermal stresses are obtained. From the numerical sample calculation, the following results can be obtained. (1) Thermal stresses can be estimated by the sujected method. (2) The stress component, which is parallel to the weld direction is the largest stress component in major part of the strip. (3) In obtaining a stress component for the engineering purpose, length of the strip can be treated as five times of the thickness with same degree of convergency.

  • PDF

Establishment of calculation methodology and thermal analysis for the development of a water calorimeter

  • Kang, M.Y.;Kim, Junhyuck;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2620-2629
    • /
    • 2020
  • As an early stage in the development of a water calorimeter, this study established a computer simulation methodology for analyzing the thermal behavior of a water calorimeter based on radiation transport and energy deposition. As a result, this study developed a method wherein the energy deposition distribution, which is obtained by applying Monte Carlo methods in water calorimeters, is directly used as a heat source for the thermal analysis model. Based on the proposed method, heat transfer in a water vessel and the effect of thermistor self-heating were analyzed. Through an analysis of the water velocities with and without a water vessel, it was found that a water vessel can serve as a convection barrier. Furthermore, it was confirmed that when considering thermistor self-heating, the water temperature change at the thermistor location is 0.219 mK higher compared to that when the thermistor was not considered. Therefore, thermistor self-heating must be considered to analyze the thermal behavior of a water calorimeter more accurately.

Numerical analysis for depolarization loss of laser beam induced by thermal birefringence considering thermal lensing at Nd:YAG rod (Nd:YAG 레이저 봉의 열렌즈 효과를 고려한 열복굴절에 의한 레이저 빔 편광 왜곡의 수치 계산)

  • 박종락;신윤섭;윤태현
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.237-242
    • /
    • 1999
  • Taking into consideration the thermal lensing effects of laser rods, depolarization losses of laser beams induced by the thermal birefringence were calculated. The numerical model proposed for the calculation, which is based on the paraxial ray optics formulation and provides explicit expressions of optical path lengths for various optical elements, was described in detail. Calculated results were compared with those of Jones matrix formulation and experiments. The calculated results are in good agreement with experimental results.

  • PDF

The Development of Instantaneous Heat Flux Measurement Probe and Calculation of Thermal Stress of Piston by Finite Element Method (순간 열플럭스 측정용 프루브 개발 및 유한요소법에 의한 피스톤 열응력 계산)

  • Lee, J.S.;Woo, J.H.;Lee, E.L.;Jung, I.G.;Lee, H.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.267-275
    • /
    • 1998
  • In this study, the instantaneous heat flux measurement probe and the linkage system for the measurement of the instantaneous temperature and heat flux of the DI mono cylinder diesel engine were developed, and these were proved to have a good reliability and sensibility. A 3-D FEM model which consist of full piston to accommodate the eccentric bowl in the piston head, was applied for the analysis of the thermal stress and the temperature distribution. The mean heat flux on the piston head was used as boundary condition for the analysis of piston. The analysis showed that thermal stress concentrate on the bowl and inner surface of pin hall.

  • PDF

A Development of Thermal Radiation Plume Modelling for Heat Transfer to KSLV-II Engine Base (한국형 발사체 기저부 열전달 해석을 위한 플룸 복사 모델링 개념 개발)

  • Kim, Seong-Lyong;Ko, Ju-Yong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.507-514
    • /
    • 2012
  • In the present research, NASA LRB plume radiation models are reconstructed with Thermal Desktop software, where the radiation to vehicle base environment can be calculated. The calculation shows the similar radiation heat compared to NASA prediction. Based on LRB plume radiation model, a KSLV-II thermal radiation model is proposed.

  • PDF

Analysis of Thermal Performance of a Solar Heating & Cooling System (태양열 냉.난방시스템의 열성능 분석)

  • Kwak, Hee-Youl;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.43-49
    • /
    • 2008
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of a solar heating & cooling system by means of the $200m^2$ evacuated tube solar collector. The simulation was carried out using the thermal simulation code TRNSYS with new model of a single-effect LiBr/$H_{2}O$ absorption chiller developed by this study. The calculation was performed for yearly long-term thermal performance and for two design factors: the solar hot water storage tank and the cold water storage tank. As a result, it was anticipated that the yearly mean system efficiency is 46.7% and the solar fraction for the heating, cooling and hot water supply are about 84.4 %, 41.7% and 72.4%, respectively.

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF