• 제목/요약/키워드: Thermal boundary layer

검색결과 256건 처리시간 0.024초

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

기단변질형 한반도 강설 모의에 있어서 물리과정 모수화 과정의 효과 (Effects of Physical Parameterizations on the Simulation of a Snowfall Event over Korea Caused by Air-mass Transformation)

  • 설경희;홍성유
    • 대기
    • /
    • 제16권3호
    • /
    • pp.203-213
    • /
    • 2006
  • The objective of this paper is to investigate the effects of physical parameterization on the simulation of a snowfall event over Korea caused by air-mass transformation by using the PSU/NCAR MM5. A heavy snowfall event over Korea during 3-5 January 2003 is selected. In addition to the control experiments employing simple-ice microphysics scheme, MRF PBL scheme, and original surface layer process, three consequent physics sensitivity experiments are performed. Each experiment exchanges microphysics (Reisner Graupel), boundary layer (YSU PBL) schemes, and revised surface layer process with a reduced thermal roughness length for the control run. The control run reproduces an overall pattern of snowfall over Korea, but with a high bias by a factor of about 2. As revealed in the previous studies, the cloud microphysics and PBL parameterizations do not show a significant sensitivity for the case of snowfall. A more sophisticated cloud processes does not reveal a discernible effect on the simulated snowfall. Further, high bias in snowfall is exaggerated when a more realistic PBL scheme is employed. On the other hand, it is found that the revised surface layer process plays a role in improving the prediction of snowfall by reducing it. Thus, it is found that a realistic design of surface layer physics in mesoscale models is an important factor to the reduction of systematic bias of the snowfall over Korea that is caused by air-mass transformation over the Yellow sea.

슈퍼 듀플렉스 스테인리스강 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향 (Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel)

  • 남성길;박세진;나혜성;강정윤
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.18-25
    • /
    • 2010
  • Super-duplex stainless steels (SDSS) have a good balance of mechanical property and corrosion resistance when they consist of approximately equal amount of austenite and ferrite. The SDSS needs to avoid the detrimental phases such as sigma(${\sigma}$), chi(${\chi}$), secondary austenite(${\gamma}2$), chromium carbide & nitride and to maintain the ratio of ferrite & austenite phase as well known. However, the effects of the subsequent weld thermal cycle were seldom experimentally studied on the micro-structural variation of weldment & pitting corrosion property. Therefore, the present study investigated the effect of the subsequent thermal cycle on the change of weld microstructure and pitting corrosion property at $40^{\circ}C$. The thermal history of root side was measured experimentally and the change of microstructure of weld root & the weight loss by pitting corrosion test were observed as a function of the thermal cycle of each weld layer. The ferrite contents of root weld were reduced with the subsequent weld thermal cycles. The pitting corrosion was occurred in the weld root region in case of the all pitted specimen & in the middle weld layer in some cases. And the weight loss by pitting corrosion was increased in proportional to the time exposed at high temperature of the root weld and also by the decrease of ferrite content. The subsequent weld thermal cycles destroy the phase balance of ferrite & austenite at the root weld. Conclusively, It is thought that as the more subsequent welds were added, the more the phase balance of ferrite & austenite was deviated from equality, therefore the pitting corrosion property was deteriorated by galvanic effect of the two phases and the increase of 2nd phases & grain boundary energy.

CRITICAL HEAT FLUX FOR DOWNWARD-FACING BOILING ON A COATED HEMISPHERICAL VESSEL SURROUNDED BY AN INSULATION STRUCTURE

  • Yang, J.;Cheung, F.B.;Rempe, J.L.;Suh, K.Y.;Kim, S.B.
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.139-146
    • /
    • 2006
  • An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

금 합금 도금층의 접촉저항에 미치는 합금원소의 종류 및 Thermal Aging의 영향 (Effect of Alloying Elements and Thermal Aging on the Contact Resistance of Electroplated Gold Alloy Layers)

  • 이지웅;손인준
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.235-241
    • /
    • 2013
  • In this study, the effects of alloying elements and thermal aging on the contact resistance of electroplated gold alloy layers were investigated by surface analysis using X-ray photoelectron spectroscopy (XPS). The contact resistance of Au-Ag alloy was lower than that of Au-Ni or Au-Co alloy after thermal aging. The XPS results show that nickel and oxygen present as nickel oxides such as NiO and $Ni_2O_3$ on the surface of gold layers after thermal aging. The increase in the contact resistance after thermal aging is attributable to the nickel oxide layer formed on the surface of the gold layers. The content of nickel diffused from the underlayer during the thermal aging was high in the order of Au-Co, Au-Ni and Au-Ag alloy because the area of grain boundary was large in the order of Au-Ag, Au-Ni and Au-Co alloy.

Microstructures and Dielectric Properties of SrTiO$_3$-Based BL Capacitor with Content of Ca

  • 김충혁;최운식;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제12권1호
    • /
    • pp.35-43
    • /
    • 1999
  • Microstructures and dielectric properties of (Sr$\_$1-x/Ca$\_$x/) TiO$_3$-0.006Nb$_2$O$\_$5/ (0.05$\leq$x$\leq$0.2) boundary layer ceramics were investigated. The samples fired in a reducing atmosphere(N$_2$) were painted on the surface with CuO paste for the subsequent grain boundary diffusion, and then annealed at 1100$^{\circ}C$ for 2 hrs. The metal oxide of CuO infiltrated by thermal diffusion from surface of sample presents continuously in not grain but only grain boundary, and makes up thin boundary phase. The SEM photo, and EDAX revealed that CuO was penetrated rapidly into the bulk along the grain boundaries during the annealing. The average grain sizes is continuously increased as the content of substitutional Ca is increased from 5[mol%] to 15[mol%], but the average grain size of the sample with content of 20[mol%] Ca is slightly decreased. In the samples with content of 10∼15[mol%] Ca, excellent dielectric properties were obtained as follows; dielectric constant <25000, dielectric loss <0.3[%], and capacitance change rate as a function of temperature <${\pm}$10[%], respectively. All samples in this study exhibited dielectric relaxation with frequency as a functior of the temperature.

  • PDF

INFLUENCE OF THERMAL CONDUCTIVITY AND VARIABLE VISCOSITY ON THE FLOW OF A MICROPOLAR FLUID PAST A CONTINUOUSLY MOVING PLATE WITH SUCTION OR INJECTION

  • Salem, A.M.;Odda, S.N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권2호
    • /
    • pp.45-53
    • /
    • 2005
  • This paper investigates the influence of thermal conductivity and variable viscosity on the problem of micropolar fluid in the presence of suction or injection. The fluid viscosity is assumed to vary as an exponential function of temperature and the thermal conductivity is assumed to vary as a linear function of temperature. The governing fundamental equations are approximated by a system of nonlinear ordinary differential equations and are solved numerically by using shooting method. Numerical results are presented for the distribution of velocity, microrotation and temperature profiles within the boundary layer. Results for the details of the velocity, angular velocity and temperature fields as well as the friction coefficient, couple stress and heat transfer rate have been presented.

  • PDF

급속 금형가열에 의한 박육 사출성형의 유동특성 개선에 관한 연구 (A Study on Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Mold Heating)

  • 박근;김병훈
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.15-20
    • /
    • 2006
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filling difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation for both the conventional molding and the RTR molding processes.

균일분포 온도하의 두꺼운 복합 재료 적층판의 열적 좌굴 해석 (Thermal Buckling of Thick Laminated Composite Plates under Uniform Temperature Distribution)

  • 이영신;이열화;양명석;박복선;이종수
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1686-1699
    • /
    • 1993
  • In this paper, the thermal buckling of thick composite angle-ply laminates subject to uniform temperature distribution is studied. For the plates of 4-edges simply supported condition and those of 4-edges clamped condition, the critical buckling temperatue is derived, using tile finite element method based on the shear deformation theory. The effects of lamination angle, layer number, laminate thickness, plate aspect ratio and boundary constraints upon the critical buckling temperature are presented.

빙축열조의 방냉과정에 대한 해석 (Analysis on the Coldness Release Process of Ice Storage Tank)

  • 유호선;김영인
    • 설비공학논문집
    • /
    • 제1권1호
    • /
    • pp.9-20
    • /
    • 1989
  • This paper presents an analysis to predict thermal behaviors of water in ice storage tank during the coldness release process. To deal with complicated transient phenomena due to ice-water phase change and the density inversion, a theoretical model which consists of initial perfectly mixed, stratified and thermal diffusion state was introduced and a criterion on the growth of thermal boundary layer was developed. The analysis includes considerations on the type of ice-making heat exchanger, refrigerator on/off and tank arrangement. Also, discussions on the various parameters and operating conditions which have influence on the performance of the system were made. Finally, simulated results were shown, which agreed with experiments in trends reasonably.

  • PDF