• Title/Summary/Keyword: Thermal bending

Search Result 472, Processing Time 0.021 seconds

Load Capability in a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate (굽힘 압전 복합재료 작동기의 하중 특성)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.880-888
    • /
    • 2007
  • This article describes the load capability of bending piezoelectric actuators with a thin sandwiched PZT plate in association with the stored elastic energy induced by an increased dome height after a curing process. The stored elastic energy within the actuators is obtained via a flexural mechanical bending test. The load capability is evaluated indirectly in terms of an actuating displacement with a load of mass at simply supported and fixed-free boundary conditions. Additionally, a free displacement under no load of mass is measured for a comparison with an actuating displacement. The results reveal that an actuator with a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators in terms of free displacement as well as actuating displacement due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at AC voltage, the actuating displacement is rather higher than the free displacement for the same actuating conditions. In addition, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric composite actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling the performance.

Bending Characteristic of CFRP & Hybrid Shaped Hat Structure Member According to Stacking Orientation Angle (적층각도변화에 따른 CFRP & 혼성 모자형 구조부재의 굽힘 특성)

  • Kim, Ji-Hoon;Kim, Jung-Ho;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this study, CFRP(Carbon Fiber Reinforced Plastics) that has high specific strength and elastic modulus and low thermal strain was used as a material for the lightweight structural member. CFRP is a fiber material as anisotropic material. The anisotropic material is characterized by the change of its mechanical properties according to stacking orientation angle. CFRP orientation angle was oriented in [A/B]s in order to examine the effect of CFRP orientation angle on the characteristics of energy absorption. CFRP is very weak to the impact from the outside. So, when impact is applied to CFRP, its strength is rapidly lowered. The hybrid material was manufactured by combining CFRP to aluminum which is lightweight and widely used for structural members of the automobile. The hybrid member was shaped as a side member that could support the automobile engine and mount and absorb a large amount of impact energy at the front-end in case of automobile collision. The bending test device was manufactured in accordance with ASTM standard, and mounted to UTM for bending test. For comparing bending characteristics of the hybrid member with those of Aluminum and CFRP member, tests were performed for aluminum, CFRP and hybrid member, respectively.

Bending strain dependence of the critical current degradation behavior in externally-reinforced Bi-2223 tapes with different hermeticity under pressurized liquid nitrogen (외부 보강된 Bi-2223테이프의 가압 $LN_2$하에서 임계전류 열화거동의 굽힘변형률 의존성)

  • Shin, Hyung-Seop;Dizon, John Rvan C;Cho, Jeon-Wook;Ha, Dong-Woo;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.257-258
    • /
    • 2006
  • The $I_c$ degradation behaviors of externally-reinforced Bi-2223 superconducting tapes under pressurized liquid nitrogen were investigated. Tapes with different thickness of reinforcement layers were compared and the results showed that when the bending strain was calculated at the outer surface, the tape with the thicker reinforcement showed a better bending strain tolerance of $I_c$, but when the bending strain was calculated at the outermost filament, the $I_c$ degradation behavior became identical for all tapes. $I_{c0}$ decreased with the increase of applied pressure. After depressurization to atmospheric pressure from 1 MPa, the $I_c$ was completely recovered to its initial values. Ballooning occurred after a thermal cycle.

  • PDF

Effects of Underfills on the Dynamic Bending Reliability of Ball Grid Array Board Assembly (Ball Grid Array 보드 어셈블리의 동적굽힘 신뢰성에 미치는 언더필의 영향)

  • Jang, Jae-Won;Bang, Jung-Hwan;Yoo, Se-Hoon;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.650-654
    • /
    • 2011
  • In this paper, the effects of conventional and newly developed elastomer modified underfill materials on the mechanical shock reliability of BGA board assembly were studied for application in mobile electronics. The mechanical shock reliability was evaluated through a three point dynamic bending test proposed by Motorola. The thermal properties of the underfills were measured by a DSC machine. Through the DSC results, the curing condition of the underfills was selected. Two types of underfills showed similar curing behavior. During the dynamic bending reliability test, the strain of the PCB was step increased from 0.2% to 1.5% until the failure circuit was detected at a 50 kHz sampling rate. The dynamic bending reliability of BGA board assembly using elastomer modified underfill was found to be superior to that of conventional underfill. From mechanical and microstructure analyses, the disturbance of crack propagation by the presence of submicron elastomer particles was considered to be mainly responsible for that result rather than the shear strength or elastic modulus of underfill joint.

A Generalized Model for the Prediction of Thermally-Induced CANDU Fuel Element Bowing (CANDU 핵연료봉의 열적 휨 모형 및 예측)

  • Suk, H.C.;Sim, K-S.;Park, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.811-824
    • /
    • 1995
  • The CANDU element bowing is attributed to actions of both the thermally induced bending moments and the bending moment due to hydraulic drag and mechanical loads, where the bowing is defined as the lateral deflection of an element from the axial centerline. This paper consider only the thermally-induced bending moments which are generated both within the sheath and the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element The generalized and explicit analytical formula for the thermally-induced bending is presented in con-sideration of 1) bending of an empty tube treated by neglecting the fuel/sheath mechanical interaction and 2) fuel/sheath interaction due to the pellet and sheath temperature variations, where in each case the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. As the results of the sensitivity calculations of the element bowing with the variations of the parameters in the formula, it is found that the element bowing is greatly affected relatively with the variations or changes of element length, sheath inside diameter, average coolant temperature and its variation factor, pellet/sheath mechanical interaction factor, neutron flux depression factor, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient and sheath and pellet thermal conductivities.

  • PDF

Mechanical Property and Fatigue Bahavior of $Al/{Al_2}{O_3}$ Metal Matrix Composite ($Al/{Al_2}{O_3}$금속복합재료의 기계적 성질과 피로거동)

  • Song, Jeong-Il;LIm, Hong-Jun;Han, Gyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.753-764
    • /
    • 1996
  • The metal matrix composites(MMC) are currently receiving a great deal of attention. These composites possess exellent mechanical and physical properties such as modulus, strength, wear resistance and thermal stability, which make them very attractive for use in automotive piston. In this study, $Al/{Al_2}{O_3}$(15%) composites are fabricated by the squeeze casting method. Mechanical properties such as tensile strength and ductility are performed at room and elevated temperature($250^{\circ}C$ and $350^{\circ}C$), respectively. Through thermomechanical analyser, thermal expansion coefficient of $Al/{Al_2}{O_3}$ composites are conducted for ranging from room temperature to ($400^{\circ}C$.And bending fatigue tests are also performed by the rotary bending machine at room temperature.The tensile strength and elastic modulus have been improved up to 38% and 35% by the addition of the reinforcements, respectively. Thermal expansion coefficients of MMCs which is located normal and parralel to the applied pressure are showed slightly different less than 10%. Fatigue strengh of the composite was improved by about 20% compared with that of unreinforced Al alloy. The results of this study will be used to understand the basic fracture behavior of MMCs and eventually to expand the applocation of MMCs as a machine parts undertaken various loadings.

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

A Study of Influence on the Thermal deflection of the Feed system in the Bearing Arrangement method (베어링 조합방법이 이송축 열변위에 주는 영향에 관한 연구)

  • 홍성오;김선진;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.46-52
    • /
    • 2001
  • One of the important technical issues is how to decrease thermal expansion of ballscrew in proportion to the increase of machining speed. when measuring force of stretch of ballscrew, since not only actual expansion and the value of bending have to be considered, it's impossible to definite the exact value of expansion. In addition, support bearings of ballscrew gain considerable force in axial direction. It also generates thermal expansion on the ballscrew, and deteriorates the bearings. In conclusion, it's impossible to give the pretension enough to absorb the all elongation due to thermal expansion generated during machine running. If gave, bed, column and saddle are all bent to change machine accuracy, and the support bearings of ballscrew are damaged. The purpose of this paper is to study the pretension of support bearing of ballscrew in machine tool.

  • PDF

Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model

  • Elmerabet, Abderrahmane Hadj;Heireche, Houari;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • In this paper, the critical buckling temperature of single-walled Boron Nitride nanotube (SWBNNT) is estimated using a new nonlocal first-order shear deformation beam theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of SWBNNT and is based on assumption that the inplane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. Results indicate the importance of the small scale effects in the thermal buckling analysis of Boron Nitride nanotube.