• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.032 seconds

The Effect of Flue-gas Recirculation on Combustion Characteristics of Self Regenerative Low NOx Burner (자기축열식 저 NOx 연소기에서 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Kim, Jong-Gyu;Dong, Sang-Keun;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced.

  • PDF

Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel (주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구)

  • 김태용;이재용;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

The Analysis of Optical Characteristics of Glasses for PV Module Application (태양전지모듈적용 투명유리의 광특성 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.98-103
    • /
    • 2008
  • The glass for crystalline PV module fabrication should have high thermal and mechanical resistance to environmental also have high transparency. In this paper, we analyze the optical characteristics of glasses for photovoltaic module application. The transmittance of several glasses are measured. The effects of texturing on low iron glass, glass thickness, anti-reflective glass, photocatalyst-treated glass and special glass are compared each other. Then this will give some information to select PV glass for manufacturing. The detailed analysis is described in the following paper.

  • PDF

Charateristics Analysis of development Model for Increased Ampacity Conductor using AMC (AMC를 이용한 송전용량 증대용 전선 개발 모델 특성 분석)

  • Sim, Sun-Bo;Min, Byeong-Wook;Wi, Hwa-Bok;Park, Jae-Ung;Yoon, Seong-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.452-454
    • /
    • 2002
  • In case the overload of an existing power line is expected as the consumption of electric power increase, we substitute STACIR/AW which has better thermal characteristic for ACSR. That can approximately double the transmission capacity. In that case the mechanical characteristics of STACIR/AW should meet the design condition of the existing tower. However, the strength of invar in STACIR/AW is lower than that of steel in ACSR, which makes it difficult to keep the safety of a conductor specially in a long span In this regard, this paper presents the new conductor model using the AMC and the analysis of its characteristics.

  • PDF

Design of a Machine Tool containing a 3-strut Parallel Kinematic Structure (병렬구조 머시닝센터 설계기술)

  • Kim, Tae-Jung;Kim, Suk-Il;Nah, Seung-Pyo;Kim, Ki-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.878-885
    • /
    • 2011
  • A kinematically-hybrid 5-axis machine tool is analyzed from the perspective of machine tool design. Its kinematic characteristics are pointed out, which should be considered during the conceptual design process. A result of the structural analysis of the machine is presented, which is performed during the detailed design process. It is also presented how we improve the thermal characteristics of the machine tool by changing the installation position of the actuators.

Binding Characteristics of Molecularly Imprinted Polymers for Ibuprofen Enantiomers (아이뷰프로펜 이성질체에 대한 molecularly imprinted polymers의 binding 특성)

  • 신명근;조규헌
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.273-278
    • /
    • 1999
  • The molecularly imprinted polymers(MIPs) synthesized at various polymerization conditions were examined as ibuprofen receptors in terms of binding characteristics. The 4-vinylpyridine polymers had 1.2 times higher adsorption capability for (S)-(+)-ibuprofen than the methacrylic acid polymers. The methacrylic acid polymers synthesized by UV radiation had 1.9 times higher selectivity for (S)-(+)-ibuprofen compared to those by thermal initiation. Effects of various solvents for binding were also examined in this research. According to the Scatchard analysis, the (S)-(+)-ibuprofen artificial receptors had two different kinds of binding sites for (S)-(+)-ibuprofen while having only single kind of binding site for ketoprofen. The binding sites of (S)-(+)-ibuprofen, n were calculated as 4.3~4.9 $\mu$mol/g and the dissociation constants, $K_D$ were 0.68 mM for the specific binding.

  • PDF

The effect of flue-gas recirculation on combustion characteristics of regenerative low NOx burner (축열식 저 NOx 연소기의 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Yoon, Young-Bin;Dong, Sang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.97-104
    • /
    • 2002
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced

  • PDF

A Study on the Characteristics of Temperature Distribution according to Material and Position of Filter in a Diesel Particulate Filter (필터의 재질 및 위치에 따른 DPF 내부의 온도 분포 특성에 관한 연구)

  • Kim, Gyu-Sung;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.903-909
    • /
    • 2012
  • This study analyzed the temperature distribution in DPF with five partitioned electric heaters. The temperature distribution in DPF is an important design factor for regeneration and durability of filter. The design Factors that influence the temperature distribution in DPF there are several. In this study, the characteristics of temperature distribution in DPF were analyzed according to the following changes. First, the thermal conductivity of the filter was analyzed about effect on the durability of the filter. Second, the length from exhaust manifold to inlet of DPF was analyzed about effect on the temperature distribution in DPF. The boundary conditions of analysis has been verified with comparison to the results of existing experimental study and the numerical analysis. Based on the identified boundary condition, on assuming the condition of the actual driving, the temperature distribution in DPF was analyzed according to material properties of filter and the position of DPF.

Analysis of Mixed Convection Heat Transfer in Arbitrarily Shaped Flat Tubes (임의형상을 갖는 납작관에서의 혼합대류 열전달 해석)

  • 박희용;박경우;이상철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.398-410
    • /
    • 2001
  • The flow and heat transfer characteristics for three-dimensional mixed convection flows in a radiator flat tube with U--shaped grooves are analyzed numerically. The flow and temperature fields are calculated by using the modified SIMPLE algorithm for irregular geometry. One tube specification among the various flat tube exchangers is recommended by considering the heat transfer and pressure drop. The effects of variation of coolant flow conditions and external air conditions on the flow and the thermal characteristics for the selected tube are investigated. the results show that inlet velocity of coolant flow is the very important factor in heat transfer and pressure drop, and top side is better position than the others as fin cleave to tube.

  • PDF

A Study on the Firing Reaction and Calcination Characteristics of Waste Shellfish (폐 패각류의 소성 및 하소 특성에 관한 연구)

  • Yoon, Cheol-Hun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.352-358
    • /
    • 2004
  • The firing reaction and calcination characteristics of the waste shellfish were examined for the future use as absorbent. The weight variation was measured according to thermal-decomposition using TGA and observed variation of the phase. The qualitative and quantitative analysis of the sample were performed using XRD and the structural analysis, SEM. The results of TGA and XRD experiments showed that the almost all of the raw Corbicula Japonica and Ostrea virginjca were changed from calcite to lime by firing and calcination reaction. The result of SEM experiment showed that the plate type of the raw sample was changed to circle type, so the surface area ratio was increased. Above results suggested that waste shellfish were usable as absorbent in the viewpoint of the reuse of resource and the decrease of environmental pollution.