• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.029 seconds

Three Dimensional Buckling Analysis of Continuous Welded Rail Track Under Thermal Load (온도하중을 고려한 장대레일 궤도의 3차원 좌굴 거동)

  • 강준석;임남형;양신추;강영종
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.471-478
    • /
    • 2000
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths. The joints cause many drawbacks in the track and lead to signeficant maintenance cost. so, railroad engineers became interested in eliminating joints. Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. but, in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal loads. In this paper, firstly, 3-D CWR track model and CWRB program exactly considering the influence of tie are developed far linear static and buckling analysis using finite element method. Characteristics of CWR track model are using 7-dofs beam element as rail, Offset technic exactly considering centroid axies difference of track components(rail, rail-pad-fastener, tie), and Thermal gradient considering thermal difference of top flange and bottom flange in rail section.. second,, Through the static and linear buckling analysis by CWRB, Influences of various track components (rail, ballast, fastener, tie and so on..) on CWR track behavior and stability was characterized.

  • PDF

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part II. Analysis of NOx formation mechanism (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part II. NOx 생성기구 분석)

  • Cho, Seo-Hee;Kim, Gyeong-Mo;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.39-47
    • /
    • 2020
  • Flue gas recirculation(FGR) is an effective combustion technique for reducing nitrogen oxides(NOx) and is applied in various fields of low-pollution combustion. Continuing the previous study, a numerical analysis was conducted to identify changes of flame characteristics and NOx formation mechanism with applying FGR technique in CH4/air premixed counterflow flames. NOx emitted was divided into four main reaction paths(thermal NO, prompt NO, N2H and N2O), showing relatively the production rate of NO with the recirculation ratio. As a result, thermal NO contributed greatly to the overall NO whereas the effect of N2H was minimal. In addition, emission index of NO was compared as the recirculation ratio increased by modifying the UC San Diego mechanism to examine the contribution of thermal NO.

Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers (다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.

Development of Thermal Performance Prediction for Large Planar Military Antenna with Multi-Cooling Channels (다중 냉각유로가 적용된 수랭식 군사용 대면적 안테나의 열성능 예측 기술)

  • YeRyun Lee;SungWook Jang;PilGyeong Choi;NohJin Kwak;JunJung Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2024
  • Large planar military antenna boasts a range of electrical components, including TRA(Transmit-Receive Assembly), signal processors, etc. which engage in computations and calculations. These processes generate a significant amount of heat, leading to unforeseen consequences for the equipment. To mitigate these adverse effects, it's imperative to implement a cooling system that can effectively reduce heat-related issues. Given the antenna's intricate nature and the multitude of components it houses, a two-step estimation process is necessary. The first step involves a comprehensive model calculation to determine the total flow characteristics, while the second step entails a thermal analysis of individual TRA set. In this study, we depicted an antenna set using simplified 3D models of its components, considering their material and thermal properties. The sequential analysis process facilitated the calculation of branched flow rates, providing insights into the individual TRA. This approach also allowed us to design a cooling system for the TRA set, assessing its thermal stability in high-temperature environments. To ensure the optimal performance of TRA, breaking down the analysis into stages based on the cooling system's structure can assist operators in predicting numerical results more effectively.

Thermal-hydraulic safety analysis of radioisotope production in HANARO using MCNP6 and COMSOL multiphysics: A feasibility study

  • Taeyun Kim;Bo-Young Han;Seongwoo Yang;Jaegi Lee ;Gwang-Min Sun;Byung-Gun Park;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3996-4001
    • /
    • 2023
  • The High-flux Advanced Neutron Application Reactor (HANARO) produces radioisotopes (RIs) (131I, 192Ir, etc.) through neutron irradiation on various RI production targets. Among them, 177Lu and 166Ho are particularly promising owing to their theranostic characteristics that facilitate simultaneous diagnosis and treatment. Prior to neutron irradiation, evaluating the nuclear heating of the RI production target is essential for ensuring the thermal-hydraulic safety of HANARO. In this study, the feasibility of producing 177Lu and 166Ho using irradiation holes of HANARO was investigated in terms of thermal-hydraulic safety. The nuclear heating rates of the RI production target by prompt and delayed radiation were calculated using MCNP6. The calculated nuclear heating rates were used as an input parameter in COMSOL Multiphysics to obtain the temperature distribution in an irradiation hole. The degree of temperature increase of the 177Lu and 166Ho production targets satisfied the safety criteria of HANARO. The nuclear heating rates and temperature distribution obtained through the in silico study are expected to provide valuable insight into the production of 177Lu and 166Ho using HANARO.

Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks (LNG 저장탱크 종합 열유동 해석프로그램 개발)

  • Kim, Ho-Yeon;Choi, Sung-Hee;Lee, Jung-Hwan;Bak, Young;Ha, Jong-Mann;Joo, Sang-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.683-688
    • /
    • 2001
  • Cryogenic LNG(Liquefied Natural Gas) which is stored in the cylindrical storage tanks of $100,000m^{3}$ has very complex flow phenomena and the changes of thermal properties with exterior conditions and operation mdoes. These complex thermofluid behaviors are affected by the storage, exterior conditions of LNG, design specifications and heat transfer characteristics of tanks, Also, those have influence on the stable storage and supply of LNG in the storage tanks. Thus this study performed the analysis on the 2-D heat transfer of the tank with exterior conditions, on the Cool Down Process in order to cool down the LNG Storage Tank at the initial normal state, and on the Filling Process considered for incoming and rising of LNG. The analysis on the Mixing LNG Storage was studied too. At last, the visualized program on the complex thermofluidodynamic analysis was developed on the basis of the above analyses. The development of this program becomes to be used to the basic design of the commercial tanks as well as to assure technical skill of the analysis on the thermal stability of the stored LNG in the LNG Storage Tank.

  • PDF

Experiment and Flow Analysis of the Flow Coefficient Cv of a 1 inch Ball Valve for a Thermal Power Plant (화력발전소용 1인치 볼 밸브 유량계수 Cv에 관한 유동해석 및 실험에 관한 연구)

  • Kang, Chang-Won;Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.109-115
    • /
    • 2019
  • The purpose of this study was to analyze and test the flow rate of a 1-inch ball valve used in a thermal power plant. To identify the flow-rate characteristics, numerical analysis was conducted and an experimental apparatus of the valve flow rate coefficient was used to compare the flow coefficient Cv values. To determine the internal pressure distribution, the sites of opening ball valves and flow fields were investigated. In particular, a smaller the valve opening resulted in a more complicated the flow field of the ball. The valve flow characteristic test showed that the Cv value and flow rate increased with increasing valve-opening rate and the secondary function was performed. The pressure drop increased as the valve opening rate decreased. In addition, the experimental results for the flow analysis are similar to the numerical analysis results.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

An Analysis of Façade Panel Characteristics of UN Studio's Office Projects (유엔스튜디오 업무시설 외피 패널의 형태적 특성 분석)

  • Ko, Sung Hak
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.8
    • /
    • pp.23-34
    • /
    • 2019
  • The façade, a fundamental function as a skin that protects human life from external environment such as cold and hot weather, snow, rain, and wind, etc, has served as a media for communication between indoor space of the building and outside space. From the media for communication point of view, the approach to envelope design, in which environmental elements are transmitted internally through the filtering of external environments, has been evolving in various ways from the past to the present. Today, modern architecture technologies including curtain wall systems and user-friendly computer programming and environmental analysis programs demonstrate a differentiated approach to envelope design related to the indoor environment. For this reason, it is worth noting that the envelope design factors and trends that appear variously in the UNStudio's projects before and after the 2000s. The factors reflected in the envelop design in conjunction with the indoor environment obtained through the case study of the UNStudio's office projects were daylight environment, thermal environment, ventilation, noise, privacy and view, and consideration for daylight environment and thermal environment was reflected in many cases through the case study. Looking at the changes in the diagrams in order of year, it can be seen that the envelope design using the environmental analysis tool has been performed since 2006. This is a clue to show the envelop design changes from the conceptual method to the data-based one. The diagrams and analysis results related to the envelop design showed that the thermal environment related to solar radiation was the most, and no diagrams and analysis related to the indoor illumination were found. Since 2010, PV panel installation has been shown in the envelope design, which can be found in the increased efficiency of PV panels due to the technological advances and the decrease in production cost.