• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.031 seconds

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

An in Depth Study of Crystallinity, Crystallite Size and Orientation Measurements of a Selection of Poly(Ethylene Terephthalate) Fibers

  • Karacan Ismail
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.186-199
    • /
    • 2005
  • A selection of commercially available poly(ethy1ene terephtha1ate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.

Axisymmetric Thermal Analysis of 3D Regenerative Cooling System (3차원 재생 냉각 시스템의 축대칭 열해석)

  • Kim Sung-In;Park Seung-O
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • Axisymmetric numerical thermal analysis for a 3-dimensional regenerative cooling system in a rocket engine is carried out. To predict the accurate heat transfer with the stiff temperature distribution, several tests have been conducted for the grid size, the properties variation of the coolant and the combustion gas depending on temperature. The axisymmetric heat flux model is defined using fin efficiencies and is designed to be equivalent to the heat flux of the 3-dimensional coolant channel. For comparison purpose, the 1-dimensional analysis using Bartz equation is also conducted. The performance of the present model in predicting the cooling characteristics of a 3-dimensional regenerative cooling system is compared with the 3-dimensional results of RTE(Rocket Thermal Evaluation). It is found that the present method predicts much closer results to those of RTE code than 1-dimensional analysis.

The DISNY facility for sub-cooled flow boiling performance analysis of CRUD deposited zirconium alloy cladding under pressurized water reactor condition: Design, construction, and operation

  • Ji Yong Kim;Yunju Lee;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3164-3182
    • /
    • 2023
  • The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.

Analysis of Residual Stress Relaxation in Welded Joints due to External Loads (외부하중에 의한 용접 체결부의 잔류응력 이완 특성 해석에 관한 연구)

  • Jang, Chang-Doo;Song, Ha-Cheol;Jo, Young-Chun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.167-170
    • /
    • 2003
  • Thermal elastic-plastic analysis was performed to assess the initial residual stress distribution of welded joints considering temperature dependent material properties. The test model was the idealized boxing fillet specimen, frequently appeared in the joints of longitudinal and transverse members of ship structure. Residual stress relaxations due to external loads were analyzed by subsequent elastic-plastic analysis considering loading and unloading steps, and the characteristics of residual stress relaxations were discussed with the levels of external loads. Additionally, to define the fatigue life of crack initiation and propagation, the S-N data for each crack length were appraised.

  • PDF

A Study on the Mechanical Characteristics by the Change of Bevel Angle of Welding Joint During PWHT (溶接이음부 形狀變化에 따른 後熱處理時의 力學的 特性에 關한 硏究)

  • 방한서;강성원;김기성;김종명;노찬승
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.64-71
    • /
    • 1997
  • In order to define the effects on shapes of welding joint, during Post Welding Heat Treatment (PWHT), we have carried out numerical analysis on the several test pieces by using computer program which was based on thermal-elasto-plastic-creep theories for the study. And then, welding residual stresses after PWHT were measured same test-pieces to compare with the results of numerical analysis. The main results obtained from this study is as follows: 1) The distribution modes of welding residual stresses are same on the all test pieces after and during PWHT by the both sides (measurement and numerical analysis). 2) The mechanical difference for change the thickness of plate and bevel angle are not appeared. 3) In a mechanical point of view (like material quality test, welding deformation etc.), manimum bevel angle (40$^{\circ}$.) is more suitable than maximum bevel angle (70$^{\circ}$).

  • PDF

Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System

  • Kim, Byung-Ok;Choi, Bum-Seog;Kim, Jeong-Man;Cho, Han-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1002-1006
    • /
    • 2015
  • In this paper, design and analysis of permanent magnet synchronous generator for ocean thermal energy conversion (OTEC) considering magnetically coupled turbine-rotor system is discussed. In particular, the rotor dynamics considering bearing span and journal shaft diameter is highlighted. The two topologies of permanent magnet synchronous generator with magnetic coupling are employed for comparison of computed rotor dynamics and generating characteristics. The analysis results show that the critical speed of the turbine-rotor system is higher when the rotor is coupled by magnetically coupling. Finally, the experimental results confirmed the validity of the proposed design and analysis scheme and successful development.

Development of Performance Analysis Model of $CO_2$ Heat Pump Heat Exchanger ($CO_2$ 히트펌프 열교환기의 성능 해석 모델 개발)

  • Kim, Min-Seok;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.651-656
    • /
    • 2006
  • A performance analysis model has been developed for fin-tube type heat exchanger for $CO_2$ heat pump. The model uses the tube-by-tube method Because air-side thermal resistance has a great portion among total thermal resistances, it is important to understand air-side heat transfer characteristics. The air-side heat transfer correlation has been proposed from experiments using water. The developed model was confirmed by experimental results and can be used for the performance analysis of heat exchanger.

  • PDF

Chemical and Thermal Characterizations of Electron Beam Irradiated Jute Fibers (전자빔 조사된 황마섬유의 화학적 및 열적 특성분석)

  • Ji, Sang Gyu;Cho, Donghwan;Lee, Byung Cheol
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.162-167
    • /
    • 2010
  • In the present work, the effect of electron beam irradiation on the chemical and thermal characteristics of cellulose-based jute fibers was explored by means of chemical analysis, electron spin resonance analysis, ATR-FTIR spectroscopy, thermogravimetric analysis and thermomechanical analysis. Jute fiber bundles were uniformly irradiated in the range of 2~100 kGy by a continuous method using a conveyor cartin an electron beam tunnel. Electron beam treatment, which is a physical approach to change the surfaces, more or less changed the chemical composition of jute fibers. It was also found that the radicals on the jute fibers can be increasingly formed with increasing electron beam intensity. However, the electron beam irradiation did not change significantly the chemical functional groups existing on the jute fiber surfaces. The electron beam irradiation influenced the thermal stability and thermal shrinkage/expansion behavior and the behavior depended on the electron beam intensity.

Thermal and Vibration Analysis of TR Module Structural Model for Environmental Test Evaluation (환경시험 평가를 위한 TR 모듈 구조모델의 열/진동 해석)

  • Dong-Seok Kang;Jong-Pil Kim;Yuri Lee;Sung-Woo Park;Jin-Ho Roh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.96-101
    • /
    • 2024
  • The Synthetic Aperture Radar (SAR) is equipped with a Transmitter/Receiver (TR) module, which serves as the signal transmission and reception unit for acquiring image data. The TR module generates significant heat during signal generation and amplification, potentially degrading performance or causing mission failure. Furthermore, launch and operational environments may result in structural damage to the components. Thus, assessing the thermal and structural safety of the TR module through thermal and vibration tests is essential to guarantee its safety. Safety assessments can be verified through environmental tests prescribed in MIL-STD-883. This paper explores the thermal and structural safety characteristics of the TR module by simulating test environments using finite element analysis prior to conducting environmental tests.