• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.028 seconds

A Study on the Frequency Control on the Induction Heating System Using Two Step Resonant Inverter (공진형 인버터를 이용한 2단 유도가열 시스템의 주파수제어에 관한 연구)

  • Yoo, Jae-Hoon;Shin, Dae-Cheul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2008
  • Proposed induction-heated system is innovative system which applied special high-frequency power circuit technique for thermal converse technique and IH(Induction-Heating) magnetic induction heating generated from induction-heated metallic package that is for distillation unit. In this occurs not burning, so that the working environment can be improved. This electromagnetic induction heating technique is used high frequency inverter. By using high frequency inverter high frequency alternative current (HFAC) in the range of [kHz] can be made with conventional alternative current. In this contribution IGBT module is used for high frequency inverter. In this paper are discussed action analysis and characteristics analysis of 1.5[kW]-Class half-bridge resonant inverter system and resonant metallic package. In addition, by using this system, how two step heating superheated steam generator is developed and application of system are also discussed.

Pyrolysis Hazard for Nano and Micro-sized Aluminium Dusts (알루미늄 나노 및 마이크로 입자의 열분해 위험성)

  • Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.75-80
    • /
    • 2015
  • Aluminum dusts, from micro to nano-scale, are widely used in various applications such as propulsion and pyrotechnic compounds because of high burning rate. In this study, the pyrolysis hazard of aluminum dusts with different median size (sized by 70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) were investigated experimentally. The thermal decomposition characteristics of aluminum dusts with the variation of heating rate were investigated using TGA (Thermo gravimetric analysis) and was estimated the minimum ignition temperature from temperature of weight gain in nano and micro-sized aluminum dusts with different diameter. In the same condition of heating rate, the temperature of weight gain in aluminum dust layers increased with increasing of particle size and increased with increasing of heating rates in air. From the results, it was estimated that the pyrolysis hazard of aluminum dusts decrease with increasing of mean diameter.

Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography (적외선열화상을 이용한 베어링의 실시간 윤활상태에 따른 상태감시에 관한 연구)

  • Kim, Dong-Yeon;Hong, Dong-Pyo;Yu, Chung-Hwan;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields.

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete (섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.

Isolation and Characterization of an Eosinophilic GH 16 β-Agarase (AgaDL6) from an Agar-Degrading Marine Bacterium Flammeovirga sp. HQM9

  • Liu, Yan;Tian, Xiaoxu;Peng, Chao;Du, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.235-243
    • /
    • 2019
  • A special eosinophilic agarase exo-type ${\beta}$-agarase gene, AgaDL6, was cloned from a marine agar-degrading bacterium, Flammeovirga sp. HQM9. The gene comprised 1,383-bp nucleotides encoding a putative agarase AgaDL6 of 461 amino acids with a calculated molecular mass of 52.8 kDa. Sequence analysis revealed a ${\beta}$-agarase domain that belongs to the glycoside hydrolase family (GH) 16 and a carbohydrate-binding module (CBM_4_9) unique to agarases. AgaDL6 was heterologously expressed in Escherichia coli BL21 (DE3). Enzyme activity analysis of the purified protein showed that the optimal temperature and pH of AgaDL6 were $50^{\circ}C$ and 3.0, respectively. AgaDL6 showed thermal stability by retaining more than 98% of activity after incubation for 2 h at $50^{\circ}C$, a feature quite different from other agarases. AgaDL6 also exhibited outstanding acid stability, retaining 100% of activity after incubation for 24 h at pH 2.0 to 5.0, a property distinct from other agarases. This is the first agarase characterized to have such high acid stability. In addition, we observed no obvious stimulation or inhibition of AgaDL6 in the presence of various metal ions and denaturants. AgaDL6 is an exo-type ${\beta}$-1,4 agarase that cleaved agarose into neoagarotetraose and neoagarohexaose as the final products. These characteristics make AgaDL6 a potentially valuable enzyme in the cosmetic, food, and pharmaceutical industries.

Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal strain gradient theory

  • Arefi, Mohammad;Pourjamshidian, Mahmoud;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.157-171
    • /
    • 2019
  • In this research, the dynamic instability region (DIR) of the sandwich nano-beams are investigated based on nonlocal strain gradient elasticity theory (NSGET) and various higher order shear deformation beam theories (HSDBTs). The sandwich piezoelectric nano-beam is including a homogenous core and face-sheets reinforced with functionally graded (FG) carbon nanotubes (CNTs). In present study, three patterns of CNTs are employed in order to reinforce the top and bottom face-sheets of the beam. In addition, different higher-order shear deformation beam theories such as trigonometric shear deformation beam theory (TSDBT), exponential shear deformation beam theory (ESDBT), hyperbolic shear deformation beam theory (HSDBT), and Aydogdu shear deformation beam theory (ASDBT) are considered to extract the governing equations for different boundary conditions. The beam is subjected to thermal and electrical loads while is resting on Visco-Pasternak foundation. Hamilton principle is used to derive the governing equations of motion based on various shear deformation theories. In order to analysis of the dynamic instability behaviors, the linear governing equations of motion are solved using differential quadrature method (DQM). After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various shear deformation theories, nonlocal parameter, strain gradient parameter, the volume fraction of the CNTs, various distributions of the CNTs, different boundary conditions, dimensionless geometric parameters, Visco-Pasternak foundation parameters, applied voltage and temperature change on the dynamic instability characteristics of sandwich piezoelectric nano-beam.

Stability Characteristics of Supercritical High-Pressure Turbines Depending on the Designs of Tilting Pad Journal Bearings

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, for a high-pressure turbine (HPT) of 800 MW class supercritical thermal-power plant, considering aerodynamic cross-coupling, we performed a rotordynamic logarithmic decrement (LogDec) stability analysis with various tilting pad journal bearing (TPJB) designs, which several steam turbine OEMs (original equipment manufacturers) currently apply in their supercritical and ultra-supercritical HPTs. We considered the following TPJB designs: 6-Pad load on pad (LOP)/load between pad (LBP), 5-Pad LOP/LBP, Hybrid 3-Pad LOP (lower 3-Pad tilting and upper 1-Pad fixed), and 5-Pad LBPs with the design variables of offset and preload. We used the API Level-I method for a LogDec stability analysis. Following results are summarized only in a standpoint of LogDec stability. The Hybrid 3-Pad LOP TPJBs most excellently outperform all the other TPJBs over nearly a full range of cross-coupled stiffness. In a high range of cross-coupled stiffness, both the 6-Pad LOP and 5-Pad LOP TPJBs may be recommended as a practical conservative bearing design approach for enhancing a rotordynamic stability of the HPT. As expected, in a high range of cross-coupled stiffness, the 6-Pad LBP TPJBs exhibit a better performance than the 5-Pad LBP TPJBs. However, contrary to one's expectation, notably, the 5-Pad LOP TPJBs exhibit a slightly better performance than the 6-Pad LOP TPJBs. Furthermore, we do not recommend any TPJB design efforts of either increasing a pad offset from 0.5 or a pad preload from 0 for the HPT in a standpoint of stability.

Effects of Catalyst Dispersion for Reaction Energy Control on Eco-AZ91 MgH2 (Eco-AZ91 MgH2의 반응열 제어에 미치는 촉매 분산 효과)

  • SOOSUN LEE;SONG SEOK;TAE-WHAN HONG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.631-640
    • /
    • 2023
  • This study selected Eco-AZ91 MgH2, which shows high enthalpy as a material for this purpose, as the basic material, and analyzed the change in characteristics by synthesizing TiNi as a catalyst to control the thermodynamic behavior of MgH2. In addition, the catalyst dispersion technology using graphene oxide (GO) was studied to improve the high-temperature aggregation phenomenon of Ni catalyst and to secure a source technology that can properly disperse the catalyst. XRD, SEM, and BET analysis were conducted to analyze the metallurgical properties of the material, and TGA and DSC analysis were conducted to analyze the dehydrogenation temperature and calorific value, and the correlation between MgH2, TiNi catalyst, and GO reforming catalyst was analyzed. As a result, the MgH2-5 wt% TiNi at GO composite could lower the dehydrogenation temperature to 478-492 K due to the reduction of the catalyst aggregation phenomenon and the increase in the reaction specific surface area, and an experimental result for the catalyst dispersion technology by GO could be ensured.

Surface Characteristics of Cattle Manure-derived Biochar: Effects of Manure Aging and Nitrogen/Phosphorus Leaching (부숙도에 따른 우분유래 바이오차의 표면특성과 질소 및 인의 침출 거동 연구)

  • Kim Naeun;Lee Heuiyun;Kwon Gihoon;Song Hocheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.24-32
    • /
    • 2023
  • Continuous increase of domestic meat consumption has inevitably increased generation of livestock manure and caused severe environmental impacts on ecosystem and human beings. This work produced biochar from cattle manure samples with different composting aging stages and investigated the properties of the produced biochar. The result of thermogravimetric analysis showed that thermal decomposition of the manure initiated at <600℃. The biochar yield was higher for the manure with a longer pre-composting period due to the elimination of microbially metabolized carbons during composting process. The result of FT-IR analysis showed that the number of surface functional groups were reduced during pyrolysis while enhancing the graphitic structures of the carbon framework. Manure samples tended to leach out N and P in leaching tests, with its amount higher for aged one than fresh one. However, their leaching was substantially suppressed when the manure was produced into biochar. In XPS spectra, it was found that N and P in the manure incorporated into biochar surface to form N-doped graphitic carbon and P-N-moieties, respectively. The findings of this work suggest that the thermochemical process can be of a viable option to valorize into biochar for potential environmental applications as well as to alleviate undesired nutrients loading to the environment.

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.